
ABSTRACT

Title of Dissertation: PROGRAM SYNTHESIS WITH
LIGHTWEIGHT ABSTRACTIONS

Sankha Narayan Guria
Doctor of Philosophy, 2023

Dissertation Directed by: Professor David Van Horn
Professor Jeffrey S. Foster

The world is reliant on software systems of unprecedented scale, while our methods

for developing software still require programmers to manually write code with little

help toward ensuring the software correctly meets its intent. Program synthesis, which

automatically generates correct programs from specifications, offers a hopeful path

forward. While program synthesis has had many successes in recent years, these

have mostly been in restricted domains; synthesis has not yet proved useful for the

practicing software engineer.

This dissertation aims to advance program synthesis to meet the challenges posed by

the use of modern general-purpose languages, tools, and frameworks. This dissertation

presents work towards an automated programming stack that uses specifications and

expressive test cases written by programmers to scale synthesis tools to diverse domains.

Specifically, it demonstrates that types enriched with effect descriptors inferred from

test cases are a potent means to guide the synthesis of real Ruby on Rails web apps, and

that types enriched with logical predicates can be used to synthesize verified privacy

preserving queries. The key to both projects, and most other successful synthesis

work, is the proper choice of abstraction for the problem domain at hand. Based on

this insight, this dissertation contributes a new synthesis framework that takes as a

parameter an abstract interpreter and automatically guides the search with it. This

framework captures many different synthesis approaches from the literature, making

it easier to build the synthesis tools of the future. The dissertation concludes with a

vision for an automated programming stack that uses specifications and expressive

test cases written by programmers to scale synthesis tools to diverse domains, moving

us closer to a world in which correct programs are constructed automatically based

on programmer’s intent.

PROGRAM SYNTHESIS WITH LIGHTWEIGHT ABSTRACTIONS

by

Sankha Narayan Guria

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2023

Advisory Committee:
Professor David Van Horn, Co-chair/Co-advisor
Professor Jeffrey S. Foster, Co-chair/Co-advisor
Professor Lawrence Washington, Dean’s Representative
Professor Michael Hicks
Professor Leonidas Lampropoulos

कमर्ण्यवेािधकारते मा फलेष ुकदाचन ।

मा कम र्फलहतेभुू र्मा र् त े सगोऽकमर्िण ॥ ४७ ॥

Karmanye vadhikaraste Ma Phaleshu Kadachana,

Ma Karmaphalaheturbhurma Te Sangostvakarmani

You have the right to work only but never to its fruits.

Let not the fruits of action be your motive, nor let it be your attachment to inaction.

— Bhagavad Gita, Chapter 2, Verse: 47

ii

Acknowledgements

It is unfortunate that a PhD is given to one person, when going through graduate

school and doing research takes a village, and more so amidst a global pandemic.

I am indebted to my advisors David Van Horn and Jeff Foster for their unwavering

support and encouragement in every new research idea I decided to pursue. David’s

uncanny ability to distill hard technical problems down to core simple ideas inspired

me. He has guided me to write and present my ideas effectively. I still cherish the

semester we spent reading papers about verification of neural networks. Though that

effort went nowhere, it was an important lesson that not all research projects will

be successful, but it is still worth trying. Jeff is a person who cares foremost about

problems, rather than holding himself to one technique. He has repeatedly given

me the perspective to pursue the right research ideas and the right insights needed

to overcome hurdles that a research project invariably presents. Most notably, he

continued to advise me remotely even after he moved to Tufts, and took out time to

teach me invaluable skills in writing and articulation. I will consider myself successful

if I can be a fraction of the mentor to someone as David and Jeff were to me.

I would like to acknowledge my committee – Mike Hicks, Leo Lampropoulos, and

Larry Washington for their help in shaping this dissertation. A special thanks goes to

Mike and Leo, who have given me valuable advise not only on research, but also on

career at various points through my time in grad school. Mike taught me the first

programming languages class, and without him my programming language foundations

iii

would not be where it is today.

I would also like to thank Niki Vazou and Marco Guarnieri who were fun collabo-

rators. Niki’s resourcefulness and Liquid Haskell wizardry continues to surprise me to

this day. Needless to say, whatever Haskell I know is because of her. Marco helped

me understand a research area in which I had no prior experience. I have benefited

immensely from his patient and kindness.

I am grateful to my PLUM friends for thoughtful conversations, camaraderie, and

last minute presentation feedback, without which grad school would not have been

possible. Thanks to Milod, who quickly got me upto speed on doing research and

being kind to answer any questions I had along the way. Ian, James, and Kesha are

my academic siblings. PLUM would not have been the same without you! Shoutout

to Alp, Ben Mariano, Ben Quiring, Deena, Finn, Henry, Jacob, Justin, Mingwei, Phil,

Pierce, and Yiyun — our conversations about programming languages and the world

has always left me feeling enriched.

My undergraduate friends, who are now spread across six timezones were a great

source of support. While COVID-19 pandemic caused the entire world to shutdown,

our regular calls were always mentally rejuvinating. Thank you Amruta, Divya,

Deekshitha, Jenil, Kedar, Rakshit, Sanchit, and Srikar! It definitely helped that

someone was always awake somewhere on earth. A few other friends — Tagde, Hatte,

Pushon, and Prajanma for the endless laughs on our regular catch-up conversations.

Life in grad school would have been impossible without friends. Thanks to

Alejandro, Devesh, Jack, Nirat, and Nishant for giving company in hikes and board

game sessions. Shoutout to Adway, Ahana, Bidisha, Darshan, Gargi, Kunal, Nikhil,

Radhika, Rishov, Roni, Spandan, Upamanyu, Veeresh, and some more people I am

invariably missing for their friendship. I truly cherish my time in College Park because

of you!

To my family—Maa, Baba, and Kutu—thank you for your boundless love, gen-

iv

erosity, strength, and encouragement. Moving halfway across the world for a PhD is a

truly an insane thing to do. Thank you for believing in me, and encouraging me to be

resilient in the face of adversity.

Finally, to Sohini. I enjoyed the work I did over the last few years, but I enjoyed

coming back home to be with you even more. Thank you for your love, encouragement,

patience, and support; I could not have done it without you.

v

Table of contents

Acknowledgements iii

Table of contents vi

1 Introduction 1
1.1 Synthesis of Effectful Programs . 3
1.2 Synthesizing Privacy Preserving Queries 4
1.3 Generalized program search with abstract interpretation 6

2 RbSyn: Type- and Effect-Guided Program Synthesis 9
2.1 Introduction . 9
2.2 Overview . 11

2.2.1 Synthesizing Spec Solutions 14
2.2.2 Merging Solutions . 17

2.3 Formalism . 18
2.3.1 Type-Guided Synthesis . 21
2.3.2 Effect-Guided Synthesis . 23
2.3.3 Merging Solutions . 24
2.3.4 Discussion . 27

2.4 Implementation . 28
2.5 Evaluation . 32

2.5.1 Benchmarks . 33
2.5.2 Synthesis Correctness and Performance 37
2.5.3 Performance of Type- and Effect-Guidance 39
2.5.4 Effect Annotation Precision vs. Performance 40

2.6 Related Work . 42
2.7 Conclusion . 44

3 Anosy: Approximated Knowledge Synthesis with Refinement Types
for Declassification 45
3.1 Introduction . 45
3.2 Overview . 48

3.2.1 Motivation: Bounded Downgrades 48
3.2.2 Approximating knowledge from queries 52
3.2.3 Verification and Correct-by-Construction Synthesis of Knowledge 54

vi

3.3 Bounded Downgrade . 56
3.4 Refinement Types Encoding . 61

3.4.1 Abstract Domains . 61
3.4.2 Approximations of ind. sets and knowledge 63
3.4.3 The Interval Abstract Domain 65
3.4.4 The Powersets of Intervals Abstract Domain 67

3.5 Synthesis of Optimal Domains . 69
3.5.1 The query language . 69
3.5.2 Synthesis Sketch . 70
3.5.3 Synth: SMT-based Synthesis of Intervals 70
3.5.4 IterSynth: Iterative Synthesis of PowerSets 71

3.6 Evaluation . 73
3.6.1 Verification & Synthesis of ind. sets 73
3.6.2 Secure Advertising System . 78

3.7 Related Work . 81
3.8 Conclusion & Further Applications 83

4 Absynthe: Abstract Interpretation-Guided Synthesis 84
4.1 Introduction . 84
4.2 Overview . 87
4.3 Formalism . 95

4.3.1 Abstract Transformer Function DSL 97
4.3.2 Abstraction-Guided Synthesis 99

4.4 Implementation . 102
4.5 Evaluation . 106

4.5.1 SyGuS Strings . 107
4.5.2 AutoPandas . 113

4.6 Related Work . 119
4.7 Conclusion . 122

5 Conclusion and Future Work 124
5.1 Future Work . 125

A RbSyn: Complete Evaluation and Synthesis Rules 128
A.1 Evaluation Rules . 128
A.2 Type-Guided Synthesis . 130
A.3 Algorithm . 130
A.4 Branch pruning rules . 134

Bibliography 135

vii

Chapter 1

Introduction

Programming has become an essential skill for an increasing number of people ranging

from data scientists to spreadsheet users. The need for programmers is driven by

our world’s increasing reliance on software systems. These systems have grown to an

unprecedented scale, while our methods for developing software still require expert

programmers to manually write code with little help for ensuring software correctly

meets its intent. Program synthesis, which automatically generates correct programs

from specifications, offers a hopeful path forward. It enables non-experts to write

code from familiar input/output examples, and professional programmers to describe

high-level properties and automatically generate a program that exhibits them without

worrying about implementation details.

Synthesis tools need to overcome two primary challenges before they can be

practical. The first is intractability, i.e., synthesis tools must search through the

enormous space of possible programs efficiently to find the program that the user

intended. The second is enabling the specfications written by the user to be easier to

write than the intended program. A popular solution to both these problems is the

domain specialization of synthesis tools, which works by effectively reducing the space

of programs to specify and that the synthesizer has to search through. For example, the

1

FlashFill [45, 47] system in Microsoft Excel synthesizes data transformation programs

in a specialized domain-specific language (DSL) using input/output examples or

Falx [109] synthesizes data visualizations from a visualization sketch and a user

dataset.

Much of the prior work, however, requires a complete and accurate embedding

of the source language in the logic of the underlying solver the synthesis tool uses.

Such synthesis tools use techniques often ranging from symbolic execution [102],

counter-example guided synthesis [97], eliminating classes of programs that compute

the same value [1], or over-approximate semantics as predicates [58, 80, 32] (often

requiring termination measures and additional predicates for verification). Such precise

embeddings of source language is infeasible for many industrial-grade languages such

as Ruby or Python used by software engineers or data scientists in their daily workflow.

Other prior work is strongly coupled with the semantics of the source language using

purpose-built solvers like CVC4 [90] for SyGuS, but this coupling necessarily ties the

synthesis engine to the particular language model used.

This dissertation accepts the reality that behavior of programs is hard to specify,

and proposes to use lightweight specifications users already write. It proposes to

use simple abstractions such as types to efficiently guide the search for programs.

More generally, we show that such a program search can be guided by any abstract

interpreter [25], i.e., a tool that soundly approximates program behavior. However, to

verify correctness, it proposes testing the programs in the canonical concrete intrepreter

of a language. Abstractions can be coarse- or fine-grained as long as they guide the

search. Testing, on the other hand, guarantees correctness for programs that use

arbitrary libraries which lack precise formal models. In summary, this dissertation

aims to demonstrate that:

Techniques from abstract interpretation can be combined with program

testing to build program synthesis tools using lightweight specifications, to

2

generate correct programs in languages or libraries of choice.

1.1 Synthesis of Effectful Programs

A key task in modern software development is writing code that composes calls to

existing APIs, such as from a library or framework. Component-based synthesis aims

to carry out this task automatically, and researchers have shown how to perform

component-based synthesis using types [31] or special properties of the synthesis

domain [55], which is critical to achieving good performance. However, prior work

does not explicitly consider side effects, which are pervasive in many domains. For

example, consider web apps, a centerpiece of daily online interactions. Such apps act

as the liaison between the database, network, and global state of the program itself.

Any operation to read or modify data from such an external systems are side effects.

However, these apps are not amenable to formal specifications primarily due to the

overhead of formally modeling external systems like the database or the network. Such

apps often relying on type systems and testing to enforce correctness, making it hard

to use existing synthesis methods.

We address this limitation of applying synthesis to such web apps by introducing

RbSyn [49], a new tool for synthesizing Ruby methods. In RbSyn, the user specifies

the desired method by its type signature and a series of test cases it must pass.

RbSyn then searches for a solution by enumerating candidates and checking them

against the tests. The key novelty of RbSyn is that the search is both type- and

effect-guided. Specifically, the search begins with a typed hole, i.e., a placeholder

program, tagged with the method’s return type. Each step either replaces a typed

hole with an expression of that type, possibly introducing more typed holes; inserts

an effect hole, annotated with a write effect that may be needed to satisfy a test

assertion; or replaces an effect hole with an expression with the given write effect,

3

possibly inserting another effect hole. Once this process finds a set of method bodies

that cumulatively pass all tests, RbSyn uses a novel merging strategy to construct a

complete solution: it creates a method whose body branches among the conditions,

executing the corresponding (passing) code, thus yielding a single method that passes

all tests.

We observe, in practice, programmers test an effectful method by triggering a

complementary side-effect in their test. For example, to check if a method writes

to a database correctly, a corresponding test will read from that database location

to assert expected behavior. This led to the key insight that test executions can be

monitored for errors to automatically infer the effect holes and their desired effect

labels. We formalized this inference, and implemented a practical tool for synthesizing

programs in Ruby. RbSyn was evaluated by synthesizing database model methods

from production-grade Ruby applications like GitLab, Discourse, and Diaspora using

their original tests. Our evaluation showed effect guidance is useful for outperformance

when compared to just type-guided synthesis. Additionally, RbSyn synthesizes

if-then-else branches using unit tests, often used to encode data validation checks

and business logic in web apps. The branches synthesized by RbSyn are at parity with

code written by software engineers of those projects. Moreover, RbSyn’s lightweight

effects allows programmers to explore a spectrum between highly precise to very

coarse grained effects–allowing flexibility to tune the synthesis performance based on

specification burden vs. synthesis time budget, while still being correct because of

testing.

1.2 Synthesizing Privacy Preserving Queries

While RbSyn with its coarse grained type-and-effects is a good fit for database access

methods in web apps, there are domains (like security) that are safety-critical and

4

require precision and stronger correctness guarantees. For example, a common security

task is to ensure that private or sensitive data cannot be accessed by unauthorized

third parties, a property formalized as non-interference [41]. Information flow control

(IFC) [92] systems are designed to protect the confidentiality of such secrets during pro-

gram execution thus enforcing non-interference. However, in practice, non-interference

is too strong for most programs, as most occasionally need to reveal information about

sensitive data. For example, a password check routine needs to display the result of

checking if the user-input password is correct or not, which leaks a bit of information

about the password. To support such use cases, programmers use declassification

statements in IFC applications that weaken non-interference by allowing selective

disclosure. Declassification statements, however, are typically part of an application’s

trusted computing base and developers are responsible for properly vetting them. In

particular, mistakes in declassifications can easily compromise a system’s security

because declassified information bypasses non-interference checks.

To address this problem, we design Anosy [50], a framework for enforcing declas-

sification policies that regulate what information can be declassified by limiting the

amount of information an attacker could learn from the declassification statements.

Specifically, declassification policies are expressed as constraints over knowledge, which

semantically characterizes the set of secrets an attacker considers possible given the

observations. To enforce such policies, first we develop a novel encoding of attacker

knowledge approximations using LiquidHaskell’s refinement types to produce machine-

checked proofs of correctness. Second, the constraints generated by these refinement

types are combined with numerical optimization in Anosy to automatically synthesize

functions to compute correct-by-construction knowledge approximations for queries

on secret data. The key innovation of Anosy is the synthesis of a function that given

any prior knowledge of the attacker, computes the attacker’s posterior knowledge if

the query on secrets were to be executed. As a result, such a function can be directly

5

integrated in the application, eliminating the need to run an expensive static analysis

(such as Prob [68]) for each query computation.

Anosy was evaluated using domains such as intervals [24] or powersets of inter-

vals [84, 10] on diverse set of queries from past work inspired by targeted advertising

on Facebook. Anosy’s synthesis being a compile time operation has a one time

upfront cost, but the subsequent estimation of adversary’s knowledge incurs no cost.

In contrast, tools like Prob need to run an expensive static analysis each time adver-

sary knowledge is to be computed. Moreover, Anosy’s synthesis algorithm is more

precise for queries containing disjunctions than Prob for higher precision domains like

powersets. Anosy ships with a monad, AnosyT that allows safe declassifications to

guarantee end-to-end policy compliance in applications. We show that such declassifi-

cations support sequence of multiple queries to be answered securely in an end-to-end

application, while the precision and time taken for synthesis can be tuned using the

cardinality of powersets.

1.3 Generalized program search with abstract inter-

pretation

RbSyn and Anosy both are separate tools that rely on very different abstractions to

guide the synthesis search. Their search algorithms are inherently tied to the abstract

domain defintion and the semantics. In general, developing a synthesis tool requires

designing the search algorithm tied to the language semantics using abstractions of

our choice. However, often the key insight is in designing the right abstraction for

the problem domain, like types and effects for Ruby programs or refinement types

for Haskell programs. A natural question arises: is there a better way to design

synthesis tools that can guide the search based on abstraction while keeping the search

algorithms independent of the used domain?

6

To answer this question, we develop Absynthe [48], an approach based on user-

defined abstract semantics that aims to be both lightweight and language agnostic.

The synthesis engine is parameterized by the abstract semantics and independent of

the source language. In Absynthe, users define a synthesis problem via concrete

test cases and an abstract specification in some user-specified abstract domain. These

abstract domains, and the semantics of the target language in terms of the abstract

domains, are written by the user in a domain-specific language. Moreover, the user

can define multiple simple domains, each defining a partial semantics of the language,

which they can combine together as a product domain automatically. Absynthe uses

these abstract specifications to automatically guide the search for the program using

the abstract semantics. The abstract semantics are lightweight to design, simplifying

away inconsequential language details, yet effective in guiding the search for programs.

The key novelty of Absynthe is that it separates the search procedure from

the definition of abstract domains, allowing the search to be guided by any user-

defined domain that fits the synthesis task. More specifically, the program search in

Absynthe begins with a hole tagged with an abstract value representing the method’s

expected return value. At each step, Absynthe substitutes this hole with expressions,

potentially containing more holes, until it builds a concrete expression without any

holes. Each concrete expression generated is finally tested in the reference interpreter

to check if it passes all test cases. A program that passes all test cases is considered

the solution.

For a baseline comparison against other tools, we evaluated Absynthe on the

SyGuS strings benchmark—a standard program synthesis benchmark in a small

functional language. Unlike tools like CVC4 [89] (when used in SyGuS synthesizer

mode), that have complete background theory for strings and linear integer arithmetic,

Absynthe works with more lightweight semantics like string length, string prefix, and

string suffix domains. It does not have any additional semantic knowledge of integers

7

or strings outside these domains. Moreover, Absynthe’s guidance using the abstract

semantics allows it to outperform other enumerative synthesis tools designed for SyGuS

programs [3]. Absynthe also allows the programmer to mix-and-match abstract

domains for each synthesis task based on the expressiveness of the domains used

for specification. This allows the user to move on a performance and expressiveness

spectrum, where using a simple domain searches through more programs but a more

expressive domain prunes more programs. The generalizability of Absynthe to

different synthesis problems is evaluated by synthesizing benchmarks unrelated to

SyGuS. We use the AutoPandas benchmark [13]—a suite of Python data frame

manipulation programs using the Pandas library sourced from StackOverflow questions.

Pandas data frames are commonly used by data scientists for data wrangling before

any downstream analysis is done. AutoPandas uses a graph neural network models

trained on dedicated hardware (4 Nvidia Titan V GPUs) over a 48 hour period to

solve 17 out of 26 benchmarks. In contrast, Absynthe solves the same number of

benchmarks (with some overlap in the set of benchmarks solved) using just a type

system and sets of data frame column labels on a 2016 Macbook Pro.

We believe Absynthe represents an important step forward in the design of

practical synthesis tools that provide lightweight formal guarantees while ensuring

correctness from tests.

8

Chapter 2

RbSyn: Type- and Effect-Guided

Program Synthesis

2.1 Introduction

A key task in modern software development is writing code that composes calls to

existing APIs, such as from a library or framework. Component-based synthesis aims

to carry out this task automatically, and researchers have shown how to perform

component-based synthesis using SMT solvers [55]; how to synthesize branch condi-

tions [78]; and how to perform synthesis given a very large number of components [31].

This prior work guides the synthesis process using types or special properties

of the synthesis domain, which is critical to achieving good performance. However,

prior work does not explicitly consider side effects, which are pervasive in many

domains. For example, consider synthesizing a method that updates a database.

Without reasoning about effects—in this case, that the method body needs to change

the database—synthesis of such a method reduces to brute-force search, limiting its

performance.

In this chapter, we address this issue by introducing RbSyn, a new tool for

9

synthesizing Ruby methods. In RbSyn, the user specifies the desired method by its

type signature and a series of test cases it must pass. RbSyn then searches for a

solution by enumerating candidates and checking them against the tests. The key

novelty of RbSyn is that the search is both type- and effect-guided. Specifically, the

search begins with a typed hole tagged with the method’s return type. Each step

either replaces a typed hole with an expression of that type, possibly introducing more

typed holes; inserts an effect hole, annotated with a write effect that may be needed

to satisfy a test assertion; or replaces an effect hole with an expression with the given

write effect, possibly inserting another effect hole. Once this process finds a set of

method bodies that cumulatively pass all tests, RbSyn uses a novel merging strategy

to construct a complete solution: It creates a method whose body branches among the

conditions, executing the corresponding (passing) code, thus yielding a single method

that passes all tests. (§ 2.2 gives a complete example of RbSyn’s synthesis process.)

We formalize RbSyn for λsyn, a core object-oriented language. The synthesis

algorithm is comprised of three parts. The first part, type-guided synthesis, is similar

to prior work [76, 37, 80], but is geared towards imperative, object-oriented programs.

The second part is effect-guided synthesis, which tries to fill an effect hole ♢ : ϵ with

an expression with effect ϵ. In λsyn, an effect accesses a region A.r, where A is a

class and r is an uninterpreted identifier. For example, Post.author might indicate

reading instance field author of class Post. This notion of effects balances precision

and tractability: effects are precise enough to guide synthesis effectively, yet coarse

enough that reasoning about them is simple. The last part of the synthesis algorithm

synthesizes branch conditions to create a merged program that combines solutions for

individual tests into an overall solution for the complete problem. (§ 2.3 discusses our

formalism.)

Our implementation of RbSyn is built on top of RDL, a Ruby type system [36].

Our implementation extends RDL to include effect annotations, including a self

10

region to give more precise effect information in the presence of inheritance. Our

implementation also makes use of RDL’s type-level computations [57] to provide precise

typing during synthesis. Finally, when searching for solutions, our implementation

heuristically prioritizes further exploration of candidates that are small and have

passed more assertions. (§ 2.4 describes our implementation.)

We evaluated RbSyn on a suite of 19 benchmarks, including seven benchmarks we

wrote and 12 benchmarks extracted from three widely used, open-source Ruby apps:

Discourse, Gitlab, and Disaspora. For the former, we wrote our own specifications.

For the latter, we used unit tests that came with the benchmarks. We found that

RbSyn synthesizes correct solutions for all benchmarks and does so quickly, taking

less than 9 seconds each for 15 of the benchmarks, and 83 seconds for the slowest

benchmark. Moreover, type- and effect-guidance is critical. Without it, a majority

of the benchmarks time out after five minutes. Finally, we examine the tradeoff of

effect precision versus performance. We found that restricting effects to class names

only causes 3 benchmarks to time out, and restricting effects to only purity/impurity

causes 10 benchmarks to time out. (§ 2.5 discusses the evaluation in detail.)

We believe that RbSyn is an important step forward in synthesis of effectful

methods from test cases.

2.2 Overview

In this section, we illustrate RbSyn by using it to synthesize a method from a

hypothetical web blogging app. This app makes heavy use of ActiveRecord, a popular

database access library for Ruby on Rails. It is the ActiveRecord methods whose side

effects RbSyn uses to guide synthesis.

Figure 2.1 shows the synthesis problem. This particular app includes database

tables for users and posts. In ActiveRecord, rows of these tables are represented as

11

1 # User schema {name: Str, username: Str}
2 # Post schema {author: Str, title: Str, slug: Str}
3

4 define :update_post, "(Str, Str, {author: ?Str, title: ?Str, slug:
5 ?Str}) → Post", [User, Post] do
6

7 spec "author can only change titles" do
8 setup {
9 seed_db # add some users and their posts to db

10 @post = Post.create(author: 'author', slug: 'hello-world', title:
11 'Hello World')
12 update_post('author', 'hello-world', author: 'dummy', title:
13 'Foo Bar', slug: 'foobar')
14 }
15 postcond { |updated|
16 assert { updated.id == @post.id }
17 assert { updated.author == "author" }
18 assert { updated.title == "Foo Bar" }
19 assert { updated.slug == 'hello-world' }
20 }
21 end
22

23 spec "other users cannot change anything" do
24 setup { ... # same setup as above except next line
25 update_post('dummy', ...) # other args same
26 }
27 postcond { |updated| ... # same other three asserts
28 assert { updated.title == "Hello World" }
29 }
30 end
31 end

Figure 2.1: Specification for update_post method

12

instances of classes User and Post, respectively. For reference, the table schemas

are shown in lines 1 and 2. Each user has a name and username. Each post has the

author’s username, the post’s title, and a slug, used to compute a permalink.

The goal of this particular synthesis problem, given by the call to define, is to

create a method update_post that allows users to change the information about a

post. Lines 4 and 5 specify the method’s type signature in the format of RDL [36], a

Ruby type system that RbSyn uses for types and type checking. Here, the first two

arguments are strings, and the last is a finite hash type that describes an instance

of Hash with optional (indicated by ?) keys author, title, and slug (all symbols,

which are just interned strings) that map to strings. The method itself returns a Post.

In addition to the type signature, the synthesis problem also includes a list of

constants that can be used in the target method. In this case, those constants are

the classes User and Post, as given by the last argument to define on line 5. These

classes can then be used to invoke singleton (class) methods in the synthesized method.

For simplicity, we assume that RbSyn can use only these constants for this example.

In practice, RbSyn can synthesize predefined numeric or string constants like 0, 1 or

the empty string.

Finally, the synthesis problem includes a number of specs, which are just test cases.

Each spec has a title, for human convenience; a setup block to establish any necessary

preconditions and call the synthesized method; and a postcond block with assertions

that must hold after the synthesized method runs. As we will see below, separating

the pre- and postconditions allows RbSyn to more easily use effects to guide synthesis.

In this example, both specs add a few users and a post created by each of them to

the database (call to seed_db, details not shown) and then create a post titled “Hello

World” by the user author. The first spec asserts that update_post allows author

to update a post’s title. The second spec asserts that a dummy user cannot update the

post. The check for id ensures that only existing posts are updated (any new posts

13

☐: Post

(☐:Class<Post>)
 .first

(☐:Class<Post>)
 .where(☐:{FF.}).first

(☐:Class<Post>)
 .exists?(☐:{FF.})

Post.where(☐:{id: Int,
 slug: Str, FF.})
 .first

Post.where({
 id: (☐:Int)})
 .first

Post.where({
 slug: (☐:Str)})
 .first

Post.where({
 slug: arg0})
 .first

Post.where({
 slug: arg1})
 .first

Post.first

✓

✗✗

✗

✗

t0 = Post.where({
 slug: arg1}).first
(☐:Post).title =
 (☐:Str)
☐:Post

t0 = Post.where({
 slug: arg1}).first
t0.title = arg0
t0

t0 = Post.where({
 slug: arg1}).first
t0.title = (☐:{
 author: Str, title: Str, FF.})
 [☐:author or title or FF.]
t0

✗

✗
t0 = Post.where({
 slug: arg1}).first
t0.title =
 arg2[:author]
t0

t0 = Post.where({
 slug: arg1}).first
t0.title =
 arg2[:title]
t0

✗
Effect: Post.title

Type Error

Test Failure
No Terms

Test Failure

Test Failure

Test Failure

Test Failure

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C14

C15

t0 = Post.where({
 slug: arg1}).first
(◇:Post.title)
☐:Post C10

C9

Figure 2.2: Steps in the synthesis of solution to the first specification. Note C2 takes
two steps to synthesize but is shown as a single composite step. Some choices available
to the synthesis algorithm have been omitted for simplicity.

will have a new unique id).

The final, synthesized solution is shown in Figure 2.3. Notice the synthesized

code calls several ActiveRecord methods (exists?, where, and first) as well as

the hash access method []. Applying solver-aided synthesis to this problem would

require developing accurate models of these methods, which is a difficult challenge [71].

To address this limitation, RbSyn instead enumerates candidates, which can then

be run to check them against the specs. As the search space is vast, RbSyn uses

update_post’s type signature and the effects from the specs’ postconds the guide the

search. Finally, RbSyn uses a novel merging algorithm to synthesize the necessary

branch condition to yield a solution that satisfies both specs.

2.2.1 Synthesizing Spec Solutions

Figure 2.2 shows the search process RbSyn uses to solve this synthesis problem. To

begin, RbSyn observes that the return type of update_post is Post. Thus, the

search begins (upper left) by creating a candidate method body □:Post, which is a

14

1 def update_post(arg0, arg1, arg2)
2 if Post.exists?(author: arg0, slug: arg1)
3 t0 = Post.where(slug:arg1).first
4 t0.title=arg2[:title]
5 t0
6 else
7 Post.where(slug: arg1).first
8 end
9 end

Figure 2.3: Synthesized update_post method.

typed hole that must be filled by an expression of type Post. RbSyn then iteratively

expands holes in candidates, running the specs whenever it produces fully concretized

candidates with no holes.

In general, RbSyn can fill a typed hole with a local variable, a constant, or a

method call. As there are no local variables (which so far are just parameters) or

constants of the appropriate type, RbSyn chooses a method call. To do so, it searches

through the available method type annotations to find those that could return Post.

In this case, RbSyn takes advantage of RDL’s type annotations for ActiveRecord [57]

to synthesize candidates C1 and C2, among others (not shown). It is straightforward

for the user to add type annotations for any other library methods that might be

needed by the synthesized method. For illustration purposes, we also show a candidate

C3 that returns the wrong type. Such candidates are discarded by RbSyn, vastly

reducing the search space. Note that C2 contains two method calls, and thus would

take two steps to produce, but we show it here as a single step for conciseness.

Next, RbSyn tries to fill holes in candidate expressions, starting with smaller

candidates. In this case, it first considers C1, which has a hole of type Class<Post>,

which is the singleton type for the constant Post. Thus, there is only one choice for

the hole, yielding candidate C4. Since C4 has no holes, RbSyn runs it against the

specs. More specifically, it runs it against the first spec—as we will discuss shortly,

RbSyn synthesizes solutions for each spec independently, and then combines them.

15

In this case, C4 fails the spec (because the first post in the database is not the one to

be updated, due to the initial database seeding) and hence is rejected.

Continuing with C5, RbSyn fills in the (finite hash-typed) hole, yielding choices

that include C6 and C7. RbSyn rejects C6 since there is no way to construct an

expression of type Int. However, for C7, there are two local variables of type Str

from the method arguments. Substituting these yields C8 and C9. C8 uses arg0, the

username, to query the Post table’s slug, so it fails. C9 queries the Post table with

the correct slug value arg1. This passes the first two assertions (line 16 onwards) but

fails the third, which expects the post title to be updated from “Hello World” to “Foo

Bar.”

RbSyn extends RDL’s type annotations to include read and write effects. When

the expression inside an assert evaluates to false, RbSyn infers the assert’s read

and write effects based on those of the methods it calls. For example, we can give the

Post#title1 method, used by the third assertion, the following signature:

type Post, :title, ’() → Str’, read: [’Post.title’]

Thus, RbSyn sees that the failing assertion reads Post.title, an abstract effect label.

To make the assertion succeed, RbSyn inserts an effect hole ♢ : Post.title in the

candidate program (C10). It also saves the value of the previous candidate expression

in a temporary variable, and inserts a hole with the candidate’s type at the end.

RbSyn then continues the search, trying to fill the effect hole with a call to a method

whose write effect matches the hole—such a call could potentially satisfy the failed

assertion. Here, RbSyn replaces the effect hole (C11) with a call to Post#title=,

which is such a method. (We should note that all previous candidates that failed a

spec due to a side effect will also have effect holes added in a similar fashion. We omit

these candidates from the discussion as they do not lead to a solution.)

RbSyn continues by using type-guided synthesis for the typed holes of C11—
1A#m indicates instance method m of class A.

16

yielding C12, rejected due to assertion failures—and then C13. After several steps

(not shown), RbSyn arrives at C14, which fails the spec, and C15, which fully satisfies

the first spec. Indeed, we see this exact expression in lines 3–5 of the solution in

Figure 2.3.

2.2.2 Merging Solutions

RbSyn next uses the same technique to synthesize an expression that satisfies the

second spec, yielding the expression shown on line 7. Now RbSyn needs to merge

these individual solutions into a single solution that passes all specs. At a high-level, it

does so by constructing a program if b1 then e1 else if b2 then e2 end, where

the ei are the solutions for the specs and the bi are branch conditions capturing the

conditions under which those expressions pass the specs.

To create the bi, RbSyn uses the same technique again, this time synthesizing a

boolean-valued expression that evaluates to true under the setup of spec i. In this

case, this process results in the same branch condition true for both specs. However,

since this trivially holds for both specs, this branch condition does not work—we need

to find a branch condition that distinguishes the two cases.

Next RbSyn tries to synthesize a branch condition b′1 that evaluates to true for

the setup of the first spec and false for the setup of the second. This yields the

more precise branch condition b′1 = Post.exists?(author: arg0, slug: arg1).

This is a sufficient condition, as the update_post method is supposed to update a post

only if a post with slug arg1 is authored by arg0. It solves an analogous synthesis

problem for the second spec, yielding b′2 = !Post.exists?(author: arg0, slug:

arg1). As these are the negation of each other, RbSyn then merges these two together

as if-then-else (rather than an if-then-else if-then-else), yielding the final

synthesized program in Figure 2.3.

17

Values v ::= nil | true | false | [A]
Expressions e ::= v | x | e; e | e.m(e)

| if b then e else e
| let x = e in e | □ : τ | ♢ : ϵ

Conditionals b ::= e | !b | b ∨ b
Types τ ::= A | τ ∪ τ
Programs P ::= def m(x) = e

Specs s ::= ⟨S,Q⟩
Setup S ::= e; xr = P (e)
Postconditions Q ::= assert e | Q;Q
Spec Set Ψ := {si}
Synthesis Goal G ::= ⟨τ → τ,Ψ⟩

Class Table CT ::= ∅ | A.m : σ,CT

Method Types σ ::= τ
⟨ϵr,ϵw⟩−−−−→ τ

Type Env. Γ ::= ∅ | x : τ,Γ
Dynamic Env. E ::= x→ v
Constants Σ ::= ∅ | v : τ,Σ
Effect ϵ ::= • | ∗ | A.∗ | A.r | ϵ ∪ ϵ

r ∈ effect regions • ⊆ ϵ ϵ ⊆ ∗
A1.∗ ⊆ A2. ∗ and A1.r ⊆ A2.r and A1.r ⊆ A2. ∗ if A1 ≤ A2

ϵ1 ⊆ ϵ1 ∪ ϵ2 ϵ2 ⊆ ϵ1 ∪ ϵ2

⟨ϵ1r, ϵ1w⟩ ∪ ⟨ϵ2r, ϵ2w⟩ = ⟨ϵ1r ∪ ϵ2r, ϵ
1
w ∪ ϵ2w⟩

x ∈ variables, m ∈ methods, A ∈ classes,
Nil ≤ τ τ ≤ Obj τ1 ≤ τ1 ∪ τ2 τ2 ≤ τ1 ∪ τ2

Figure 2.4: Syntax and Relations of λsyn.

2.3 Formalism

In this section, we formalize RbSyn on λsyn, a core object-oriented calculus shown

in Figure 2.4. Values v include nil, true, false, and objects [A] of class A. Note

that we omit fields to keep the presentation simpler. Expressions e include values,

variables x, sequences e; e, method calls e.m(e), conditionals if b then e else e, and

variable bindings let x = e in e. A conditional guard b can be an expression e, a

negation !b, or a disjunction b ∨ b. The grammar for guards is limited to match what

18

RbSyn can actually synthesize.

Expressions also include typed holes □ : τ and effect holes ♢ : ϵ, which are

placeholders that are eventually filled with an expression of the given type, or expression

with the given write effect, respectively. We note our synthesis algorithm only inserts

effect holes at positions that can have any type. Types are either classes or unions of

types, and we assume classes form a lattice with Nil (the class of nil) as the bottom

element and Obj as the top element. We write A ≤ B when class A is a subclass of B

according to the lattice. We defer the definition of effects for the moment. Finally, a

synthesized program P is a single method definition def m(x) = e. We restrict the

method to one argument for convenience.

A spec s in λsyn is a pair of setup code S and a postcondition Q. A setup

e1;xr = P (e2) includes some initialization e1 followed by a special form indicating

calling the synthesized method in P with argument e2 and binding the result to xr.

The postcondition is a sequence of assertions that can test xr and inspect the global

state using library methods. We write Ψ for a set of specs, and a synthesis goal G

is a pair ⟨τ1 → τ2,Ψ⟩, where τ1 and τ2 are the method’s domain and range types,

respectively, and Ψ are the specs the synthesized method should satisfy.

The next part of Figure 2.4 defines additional notation used in the formalism.

Synthesized methods can use classes and methods from a class table CT , which maps

class and method names to the methods’ types. For example, the class table has type

information for other methods of a target app and library methods such as those

from ActiveRecord. A method type σ has the form τ
⟨ϵr,ϵw⟩−−−−→ τ ′, where τ and τ ′ are

the domain and range types, respectively, and ⟨ϵr, ϵw⟩ specifies the method’s read

effect ϵr and write effect ϵw (discussed shortly). During type-guided synthesis, RbSyn

maintains a type environment Γ mapping variables to their types. When executing a

synthesized program, the operational semantics (omitted) uses a dynamic environment

E mapping variables to their values. During synthesis, Σ is a list of user-supplied

19

constants that can fill holes.

Effects. The last part of Figure 2.4 defines effects ϵ. In RbSyn, effects are hierar-

chical names that abstractly label the program state. The empty effect • denotes no

side effect, used for pure computations. The effect ∗ is the top effect, indicating a

computation that might touch any state in the program. Lastly, effect A.∗ denotes

code that touches any state within class A, and A.r denotes code that touches the

region labeled r in A, where region names are completely abstract. Effects can also

be unioned together.

We define subsumption ϵ1 ⊆ ϵ2 on effects to hold when ϵ2 includes ϵ1. Effects •

and ∗ are the bottom and top, respectively, of the ⊆ relation, and if A1 ≤ A2 then

A1.r ⊆ A2.r and A1.r ⊆ A2.∗ and A1.∗ ⊆ A2.∗. We also have standard rules for

subsumption with effect unions.

In RbSyn, all effects arise from calling methods from the class table CT , which

have effect annotations of the form ⟨ϵr, ϵw⟩, where ϵr and ϵw are the method’s read

and write effects, respectively. We extend subsumption to such paired effects in the

natural way. During synthesis, if RbSyn observes the failure of an assertion with

some read effect ϵr, it tries to fix the failure by inserting a call to some method with

write effect ϵw such that ϵr ⊆ ϵw, i.e., it tries writing to the state that is read. For

example, in Section 2.2, this technique generated a call to Post#title.

Our effect language is inspired by the region path lists approach of [15], but is

much simpler. We opted for coarse-grained, abstract effects to make it easier to write

annotations for library methods. Although class names are included in the effect

language, such names are for human convenience only—nothing precludes a method

in class A being annotated with an effect to B.r for some other class B. We found

that this approach works well for our problem setting of synthesizing code for Ruby

apps, where trying to precisely model heap and database state would be difficult.

20

Σ,Γ ⊢CT e⇝ e : τ

Γ(x) = τ

Σ,Γ ⊢CT x⇝ x : τ
T-Var

Σ,Γ ⊢CT e1 ⇝ e′1 : τ1
Σ,Γ[x 7→ τ1] ⊢CT e2 ⇝ e′2 : τ2

Σ,Γ ⊢CT let x = e1 in e2 ⇝ let x = e′1 in e′2 : τ2
T-Let

Σ,Γ ⊢CT □ : τ ⇝ (□ : τ) : τ
T-Hole

v : τ1 ∈ Σ τ1 ≤ τ2
Σ,Γ ⊢CT □ : τ2 ⇝ v : τ1

S-Const

Γ(x) = τ1 τ1 ≤ τ2
Σ,Γ ⊢CT □ : τ2 ⇝ x : τ1

S-Var

m : τ1 → τ2 ∈ CT (A) τ2 ≤ τ3

Σ,Γ ⊢CT □ : τ3 ⇝ (□ : A).m(□ : τ1) : τ2
S-App

Figure 2.5: Type-guided synthesis rules (selected).

However, we believe the core of this approach—pairing effects (in our case, reads and

writes) and then creating candidates using the opposing element of such a pair—can

be generalized to more complex effect systems.

Synthesis Problem. We can now formally specify the synthesis problem. Given a

synthesis goal ⟨τ1 → τ2, {⟨Si, Qi⟩}⟩, RbSyn searches for a program P such that, for

all i, assuming that Si calls P with an argument of type τ1, evaluating to xr of type

τ2, it is the case that P ⊢ Si;Qi ⇓ v. In other words, evaluating the setup followed by

the postcondition yields some value rather than aborting with a failed assertion. We

omit the evaluation rules as they are standard.

2.3.1 Type-Guided Synthesis

The first component of RbSyn is type-guided synthesis, which creates candidate

expressions of a given type by trying to fill a hole □ : τ2 where τ2 is the method

return type. Figure 2.5 shows a subset of the type-guided synthesis rules; the full

21

set can be found in the companion technical report [49]. These rules have the form

Σ,Γ ⊢CT e1 ⇝ e2 : τ , meaning with constants Σ, in type environment Γ, under class

table CT , the holes in e1 can be rewritten to yield e2, which has type τ .

The rules in Figure 2.5 have two forms. The T- rules apply to expressions whose

outermost form is not rewritten. Thus these rules perform standard type checking.

For example, T-Var type checks a variable x by checking its type against the type

environment Γ, leaving the term unchanged. T-Let typechecks and recursively

rewrites (or not) the subexpressions and then rewrites those new expressions into a

let-binding, ensuring the resulting term is type-correct. Finally, T-Hole applies to a

typed hole that is not being rewritten, in which case it remains the same and has the

given type.

The S- rules rewrite typed holes. S-Const replaces a hole by a constant of the

correct type from Σ. S-Var is similar, replacing a hole by a variable from Γ. Finally,

S-App replaces a hole with a call to a method with the right return type, inserting

typed holes for the method receiver and argument.

Type Narrowing. Notice that in these three S-rules, the term replacing the hole

may actually have a subtype of the original hole’s type. Thus, type-guided synthesis

could narrow types in a synthesized program, potentially also narrowing the search

space. For example, consider an expression (□1 : Str).append(□2 : Str) that joins

two strings, and assume the set of constants Σ includes nil. Notice that nil is a

valid substitution for □1, which will then cause the type of the receiver to narrow

to Nil. But then the typing derivation fails because the Nil type has no append

method, stopping further exploration along this path. In contrast, if we had typed the

replacement term at Str, then RbSyn would have fruitlessly continued the search,

trying various replacements for □2 only to reject them due to a runtime failure for

invoking a method on nil.

22

Σ,Γ, ϵr ⊢CT e↠ e

Σ,Γ ⊢CT e⇝ e : τ

Σ,Γ, ϵr ⊢CT e↠ let x = e in (♢ : ϵr;□ : τ)
S-Eff

Σ,Γ ⊢CT e⇝ e : τ

Σ,Γ ⊢CT ♢ : ϵ⇝ (♢ : ϵ) : Obj
T-EffObj

ϵr ⊆ ϵ′w m : τ1
⟨ϵ′r,ϵ′w⟩−−−−→ τ2 ∈ CT (A)

Σ,Γ ⊢CT ♢ : ϵr ⇝ □ : ϵ′r; (□ : A).m(□ : τ1) : τ2
S-EffApp

Σ,Γ ⊢CT ♢ : ϵ⇝ nil : Nil
S-EffNil

Figure 2.6: Effect guided synthesis rule

2.3.2 Effect-Guided Synthesis

The second component of RbSyn is effect-guided synthesis, used when type-guided

synthesis creates a candidate that does not satisfy the postcondition of the tests.

If this happens, RbSyn computes the effect ⟨ϵr, ϵw⟩ of the failed assertion in the

postcondition. (We defer the formal rules for computing this effect to the technical

report [49], as they simply union the effects of method calls in the assertion.) Then,

we hypothesize that the assertion may have failed because the region denoted by ϵr is

in the wrong state.

To potentially fix the state, RbSyn applies a new rule S-Eff, shown in Figure 2.6.

The hypothesis computes the type τ of e, the candidate expression that failed the

postcondition. In the conclusion, e is rewritten to let x = e in (♢ : ϵr;□ : τ), i.e., e

is computed, bound to x, and two holes are sequenced. The first must be filled with

an expression of the desired effect ϵr. The second must have e’s type τ , to preserve

type-correctness. For example, it could be filled by x, as happened in Figure 2.2 when

t0 is returned.

The rules for working with effect holes are shown in the bottom of Figure 2.6,

23

which extends Figure 2.5. T-EffObj gives an effect hole, that is not rewritten, type

Obj. Since this is the top of the type hierarchy, this ensures an effect hole can safely

be replaced by a term with any type. In other words, effect holes are filled for their

effects, not their types. S-EffApp does the heavy lifting, filling an effect hole with

a call to a method m with a write effect ϵ′w that subsumes the desired effect ϵr. Of

course, this call may itself read state ϵ′r, so the rule precedes the method call with a

hole with that effect, in case said state needs to change. Finally, S-EffNil replaces

an effect hole with nil, which removes it from the program. This is used in case some

extra effect holes are added that are not actually needed.

2.3.3 Merging Solutions

The last component of RbSyn combines expressions that pass individual specs

into a final program that passes all specs. More specifically, given a synthesis goal

⟨τ1 → τ2, {si}⟩, RbSyn first uses type- and effect-guided synthesis to create expressions

ei such that ei is the solution for spec si. Then, RbSyn combines the ei into a branching

program roughly of the form if b1 then e1 else if b2 then e2 . . . for some bi.

For each i, RbSyn uses the type-guided synthesis rules in § 2.3.1 to synthesize

a bi such that under the setup Si of spec si, conditional bi evaluates to true, i.e.,

def m(x) = bi ⊢ Si; assert xr ⇓ v. Note effect-guided synthesis is not used here as

the asserted expression xr is pure.

Notice that while each initial bi evaluates to true under the precondition, there is

no guarantee it is a sufficient condition for si to satisfy the postcondition—especially

because RbSyn aims to synthesize small expressions, as discussed further in § 2.4.

Moreover, there may be multiple ei that are actually the same expression, and therefore

could be combined to yield a smaller solution.

Thus, RbSyn next performs a merging step to create the final solution. This

process operates on tuples of the form ⟨e, b,Ψ⟩, which is a hypothesis that the program

24

⟨e1, b1,Ψ1⟩ ⊕ ⟨e2, b2,Ψ2⟩ = ⟨e1, b1,Ψ1 ∪Ψ2⟩
if e1 ≡ e2 and b1 =⇒ b2

(2.1)

⟨e1, b1,Ψ1⟩ ⊕ ⟨e2, b2,Ψ2⟩ = ⟨e1, b1 ∨ b2,Ψ1 ∪Ψ2⟩
if e1 ≡ e2 and b1 ≠⇒ b2

(2.2)

⟨e1, b1,Ψ1⟩ ⊕ ⟨e2, b2,Ψ2⟩ = ⟨e1, bsyn1 ,Ψ1⟩ ⊕ ⟨e2, bsyn2 ,Ψ2⟩
if e1 ̸≡ e2 and b1 =⇒ b2

where ∀⟨Si, Qi⟩ ∈ Ψ1.def m(x) = bsyn1 ⊢ Si; assert xr ⇓ v

∧ ∀⟨Sj, Qj⟩ ∈ Ψ2.def m(x) = bsyn1 ⊢ Sj; assert !xr ⇓ v

and ∀⟨Si, Qi⟩ ∈ Ψ1.def m(x) = bsyn2 ⊢ Si; assert !xr ⇓ v

∧ ∀⟨Sj, Qj⟩ ∈ Ψ2.def m(x) = bsyn2 ⊢ Sj; assert xr ⇓ v

(2.3)

Figure 2.7: Rewriting rules.

fragment if b then e satisfies the specs Ψ. RbSyn repeatedly merges such tuples using

an operation ⟨e1, b1,Ψ1⟩⊕⟨e2, b2,Ψ2⟩ to represent that if b1 then e1 else if b2 then e2

satisfies the specs Ψ1 ∪Ψ2. We define Specs(⟨e1, b1,Ψ1⟩ ⊕ ...) =
⋃

Ψi, i.e., the specs

from merged tuples, and Prog(⟨e1, b1,Ψ1⟩⊕ ...) = def m(x) = if b1 then e1 else ...,

a definition with the expression represented by the merged tuples.

Figure 2.7 defines rewriting rules that are applied to create the final solution.

Rule 2.1 simplifies the case where e1 and e2 are the same and b1 implies b2, yielding

a single expression and branch that satisfy Ψ1 ∪ Ψ2. Note we omit the symmetric

case for all rules due to space limitations. Rule 2.2 applies when b1 does not imply

b2 but e1 and e2 are the same. In this case, e1 satisfies the union of the specs under

the disjunction of the branch conditions. (Note this rule could also applied if b1 ⇒ b2,

but the resulting solution would be longer than Rule 2.1 generates.) Finally, Rule 2.3

applies when e1 and e2 differ but b1 implies b2. In such a scenario, b2 holds for both e1

and e2 and thus it must be that b1 and b2 are insufficient to branch among e1 and e2.

Thus, RbSyn synthesizes a stronger conditional bsyn1 that hold for all specs in Ψ1 and

does not hold for the specs in Ψ2, and the reverse for bsyn2 . For example, recall the

application of this rule in the example of § 2.2, to synthesize a more precise branch

25

Algorithm 1 Merge programs
1: procedure MergeProgram(candidates = {⟨ei, bi,Ψi⟩})
2: merged ← {

⊕
⟨ei, bi,Ψi⟩}

3: final← {}
4: for all m ∈ merged do
5: m← apply (2.1)-(2.3) to m until no rewrites possible
6: final← final ∪ {m} if ∀⟨Si, Qi⟩ ∈ Specs(m).
7:

∧
i

Prog(m) ⊢ Si;Qi ⇓ v

8: end for
9: return Prog(m) s.t. m ∈ final

10: end procedure

condition because the initial condition true was the same for both branches.

RbSyn also includes a number of other merging rules, deferred to the Appendix A.4,

for further simplifying expressions. Like, if b1 then e1 else if !b1 then

e2 else nil can be rewritten as if b1 then e1 else e2, which was used to generate

the solution in Figure 2.3.

Checking Implication. Checking the implications in Figure 2.7 is challenging since

branch conditions may include method calls whose semantics is hard to reason about.

To solve this problem, RbSyn checks implications using a heuristic approach that is

effective in practice. Each unique branch condition b is mapped to a fresh boolean

variable z. Similarly, !b is encoded as ¬z, and b1 ∨ b2 is encoded as z1 ∨ z2. Then to

check an implication b1 ⇒ b2, RbSyn uses a SAT solver to check the implication of

the encoding. While this check could err in either direction (due to not modeling the

semantics of the bi precisely), we found it works surprisingly well in practice. In case

the implication check fails due to lack of precision, we fall back on the original ⊕

form which represents the complete program if b1 then e1 else if . . . without loss

of precision. Should the implication check incorrectly succeed, it will be caught by

running the merged program against the assertions.

26

Constructing the Final Program. Finally, notice that the merge operation ⊕ is

not associative, and it may yield different results depending on the order in which

it is applied. Thus, to get the best solution, RbSyn uses Algorithm 1. It builds

the set of all possible merged fragments (line 2). Then it simplifies each candidate

solution using the rewrite rules and only considers a candidate valid if it passes all

tests. It returns any such program as the solution. This branch merging strategy

tries all combinations, so it is less sensitive to spec order than other component based

synthesis approaches [78]. In practice, we found that reordering the specs does not

have much effect.

2.3.4 Discussion

Before discussing our implementation in the next section, we briefly discuss some

design choices in our algorithm.

Our effect system uses pairs of read and write effects in regions. As mentioned,

this core idea could be extended to any effects in a test assertion that can be paired

with an effect in the synthesized method body. For example, throwing and catching

exceptions, I/O to disk or network, or enabling/disabling features in a UI could all be

expressed this way. We leave exploring such effect pairs to future work.

One convenient feature of our algorithm is that correctness is determined by

passing specs, which are directly executed. Thus, the synthesizer can generate as

many candidates as it likes—i.e., be as over approximate as it likes—as long as its set

of candidates includes the solution. This feature enables RbSyn to use a fairly simple

effect annotation system compared to effect analysis tools [15].

We could potentially adapt our algorithm to work in a capability-based setting,

using the observation that capabilities and effects are related [27, 17, 42]. In this

setting, assertion failures in tests would indicate specific capabilities needed by the

synthesized code. We leave exploring this idea further to future work.

27

Finally, we distinguish typed holes from effect holes, rather than have a single

type-and-effect hole, to control where to use type-guidance and where to use effect-

guidance. When initially trying to synthesize a method body, we omit effects because

it is unclear which effects are needed. For example, in Figure 2.1, the second spec has

read effects on all fields of the post, and yet the target method does not write any

fields, as the spec is checking the case when the post is not modified. Thus, we cannot

simply compute the union of all read effects in all assertions and use those for effect

guidance. Moreover, type-guided synthesis often will synthesize effectful expressions,

e.g., the call to Post.where in Figure 2.3. Conversely, our algorithm only places effect

holes in positions where the type does not matter—hence type information for such a

hole would not add anything. Nonetheless, type-and-effect holes would be a simple

extension of our approach, and we leave exploration of them to future work in other

synthesis domains.

2.4 Implementation

RbSyn is implemented in approximately 3,600 lines of Ruby, excluding its dependen-

cies.

Synthesis specifications, as discussed in § 2.2, are written in a custom domain-

specific language. Each has the form:

define :name, "method-sig", [consts,...] do

spec "spec1" do setup { ... } postcond { ... } end ...

end

where :name names the method to be synthesized; method-sig is its type signature;

and consts lists constants that can be used in the synthesized method. Each spec is

a test case the method must pass: setup describes the test case setup, and postcond

makes assertions about the results.

28

In Ruby, do...end and {...} are equivalent syntax for creating code blocks, i.e.,

closures. Having the setup and postcondition in separate code blocks allows RbSyn

to run the setup code and check the postcondition independently.

RbSyn also has optional hooks for resetting the global state before any setup

block is run. This ensures candidate programs are tested in a clean slate without

being affected by side-effects from previous runs. In our experiments, RbSyn resets

the global state by clearing the database.

Program Exploration Order. While our synthesis rules are non-deterministic,

our implementation is completely deterministic. This makes it sensitive to the order

in which expressions are explored. RbSyn uses two metrics to prioritize search. First,

programs are explored in order of their size; smaller programs are preferred over larger

ones. Program size is calculated as the number of AST nodes in the program.

Second, RbSyn prefers trying effect-guided synthesis for expressions that have

passed more assertions rather than fewer. (The technical report [49] formally describes

counting passed assertions.) Untested candidates are assumed to have passed zero

assertions. In general, expressions are explored in decreasing order of number of passed

assertions, then in increasing order of program size.

These metrics combined also help when RbSyn synthesizes a candidate that does

not make any progress towards a solution: after running tests and effect-guided

synthesis on such candidates, their size increases, but if they do not pass more

assertions, they are pushed further down the search queue. We leave experimenting

with other search strategies to future work.

Effect Annotations. We extended RDL to support effect annotations along with

type annotations for library methods. Programmers specify read and write effects

following the grammar in § 2.3. For example a method annotated with a write effect

Post.author writes to some region author in some object of class Post. Here author

29

is an uninterpreted string, selected by the programmer. Similarly the labels “.” and

“∗” stand for pure and any region (or simply “impure”), respectively. A region Post.*

is written as Post for convenience. One important extension is a self effect region,

which indicates a read or write to the class of the receiver. This is essential for

supporting ActiveRecord, whose query methods are inherited by the actual Rails

model classes. For example, we use the self effect on the exists? query method

of ActiveRecord::Base. Then at a call Post.exists?, where Post inherits from

ActiveRecord::Base, we know the query reads the Post table and not any other

table.

Effect annotations are similar to frame conditions [16, 70, 35] used in verification

literature. More precise effect annotations help RbSyn find a solution faster because

it will have fewer methods with subsumed effects than an imprecise one, shrinking the

search space. But effect precision does not affect the correctness of the synthesized

program, since correctness is ensured by the specs. For example, if the effect annotation

for the method Post#title= shown in § 2.2.1 had just Post as its write annotation,

synthesis would still work, but would try more candidate programs. In some cases,

coarse effects are required, e.g. the Post.where method queries records from the Post

table. It has the coarser Post annotation because which columns such a query will

access cannot be statically specified: it depends on the arguments. We evaluate some

of the tradeoffs in effect precision in § 2.5.4.

Type Level Computations. RbSyn uses RDL [36, 88] to reason about types, e.g.,

checking if one type is a subtype of another, and using the type environment and class

table to find terms that can fill holes. RDL includes type-level computations [57], or

comp types, in which certain methods’ types include computations that run during

type checking. For example, a comp type for the ActiveRecord#joins method can

compute that A.joins(B) returns a model that includes all columns of tables A and B

30

combined. Using a comp type for joins encodes a quadratic number of type signatures,

for different combinations of receivers and arguments, into a single type, and more for

joins of more than two tables [57].

RbSyn uses RDL’s comp types, but with new type signatures designed for synthesis.

In particular, the previous version of RDL’s comp types gave precise types when the

receiver and arguments were known, e.g., in A.joins(B), RDL knows exactly which

two classes are being joined. But this may not hold during synthesis, e.g., if B is

replaced by a hole in the example, then the exact return type of the joins call cannot

be computed.

To address this issue, we modified RDL’s existing comp type signatures for

ActiveRecord methods like joins so that they compute all possible types. For

example, if a hole is an argument to joins, then the type finds all models B1, B2, . . .

that could be joined (i.e., those with associations); gives the hole type B1 ∪ B2 ∪ . . .;

and sets the return type of joins to a table containing the columns of A, B1, B2,

This over-approximation is narrowed as the argument terms are synthesized, leading

to cascading narrowing of types throughout the program as discussed in § 2.3.1.

Optimizations. Synthesis of terms that pass a spec is an expensive procedure.

In practice, we found solutions to a single spec often satisfy others. Thus, when

confronted with a new spec, RbSyn first tries existing solutions and conditionals to

see if they hold for the spec, before falling back on synthesis from scratch if needed.

This makes the bottleneck for synthesis not the number of tests, but the number of

unique paths through the program. Moreover, this reduces the number of tuples for

merging, as a single expression and conditional tuple can represent multiple specs Ψ.

Finally, we found that in practice, the condition in one spec often turns out to

be the negation of the condition in another. Thus during synthesis of conditionals,

RbSyn tries the negation of already synthesized conditionals before falling back on

31

synthesis from scratch.

Limitations. While RbSyn works on a wide range of programs, as we will demon-

strate next, it does have several key limitations. First, RbSyn currently only synthe-

sizes code that does not need type casts to be well-typed. This ensures programs do

not have type errors at run time, but eliminates some valid programs from consider-

ation. Second, the set of constants RbSyn can use during synthesis is fixed ahead

of time. This places programs that use unlikely constants out of reach, e.g., we have

encountered Rails model methods that include raw SQL query strings (instead of only

using ActiveRecord). Finally, because RbSyn uses enumerative search, it can face

a combinatorial explosion when searching for nested method calls, e.g., if there are

n possible method calls, available, synthesizing A.m(A.m(A.m(x))) may require an

O(n3) search. In practice, we did not face this problem as deeply nested method calls

are rarely used in Rails apps.

2.5 Evaluation

We evaluated RbSyn by using it to synthesize a range of benchmarks extracted from

widely used open source applications that use a variety of libraries. We pose the

following questions in our evaluation:

• How does RbSyn perform using code based on existing unit tests in widely

deployed applications? (§ 2.5.2)

• How much improvement is type-and-effect guidance compared to alternatives

such as only type-guidance or only effect-guidance? (§ 2.5.3)

• How does the precision of effect annotations affect synthesis performance?

(§ 2.5.4)

32

2.5.1 Benchmarks

To answer the questions above, we collected a benchmark suite comprised of programs

from the following sources:

• Synthetic benchmarks is a set of minimal examples that demonstrate features of

RbSyn.

• Discourse [53] is a Rails-based discussion platform used by over 1,500 companies

and online communities.

• Gitlab [40] is a web-based Git repository manager with wiki, issue tracking, and

CI/CD tools built on Rails.

• Diaspora [30] is a distributed social network, with groups of independent nodes

(called Pods), also built on Rails.

We selected these apps because they are popular, well-maintained, widely used,

and representative of programs that are written with supporting unit tests. We

selected a subset of the app’s methods for synthesis, choosing ones that fall into the

Ruby grammar we can synthesize: method calls, hashes, sequences of statements and

branches. We currently do not synthesize blocks (lambdas), for/while loops, case

statements, or meta-programming in the synthesized code. All benchmarks from apps

have side effects due to either database accesses or reading and writing globals.

33

Ta
bl

e
2.

1:
Sy

nt
he

si
s

be
nc

hm
ar

ks
an

d
re

su
lt

s.
#

Sp
ec

s
is

th
e

nu
m

be
r

of
sp

ec
s

us
ed

to
sy

nt
he

si
ze

th
e

m
et

ho
d;

A
ss

er
ts

re
po

rt
s

th
e

m
in

im
um

an
d

m
ax

im
um

nu
m

be
r

of
as

se
rt

io
ns

ov
er

al
ls

pe
cs

fo
r

ev
er

y
be

nc
hm

ar
k;

#
O

ri
g

P
at

hs
is

th
e

nu
m

be
r

of
pa

th
s

th
ro

ug
h

th
e

m
et

ho
d

as
w

ri
tt

en
in

th
e

ap
p;

#
Li

b
M

et
h

is
th

e
nu

m
be

r
of

lib
ra

ry
m

et
ho

ds
us

ed
fo

r
ev

er
y

be
nc

hm
ar

k;
T

im
e

sh
ow

s
th

e
m

ed
ia

n
an

d
se

m
i-i

nt
er

qu
ar

ti
le

ra
ng

e
ov

er
11

ru
ns

,f
ol

lo
w

ed
by

th
e

m
ed

ia
n

ti
m

e
fo

r
sy

nt
he

si
s

us
in

g
on

ly
ty

pe
s,

on
ly

eff
ec

ts
an

d
na

iv
e

te
rm

en
um

er
at

io
n

(N
ei

th
er

).
M

et
h

Si
ze

is
th

e
nu

m
be

r
of

A
ST

no
de

s
in

th
e

sy
nt

he
si

ze
d

m
et

ho
d;

#
Sy

n
P
at

hs
sh

ow
s

th
e

nu
m

be
r

of
pa

th
s

th
ro

ug
h

th
e

sy
nt

he
si

ze
d

m
et

ho
d.

Group

#
A

ss
er

ts
#

O
ri

g
#

Li
b

T
im

e
(s

ec
)

M
et

h
#

Sy
n

ID
N

am
e

Sp
ec

s
M

in
M

ax
P
at

hs
M

et
h

M
ed

ia
n
±

SI
Q

R
T

yp
es

E
ffe

ct
s

N
ei

th
er

Si
ze

P
at

hs

Synthetic

S1
lv

ar
1

1
1

1
16

4
0.

34
±

0.
01

1.
36

11
.9

7
-

4
1

S2
fa

ls
e

1
1

1
1

16
4

0.
35

±
0.

01
1.

37
12

.1
9

-
4

1
S3

m
et

ho
d

ch
ai

ns
2

1
1

1
16

4
0.

98
±

0.
01

9.
56

-
-

10
1

S4
us

er
ex

is
ts

2
1

1
1

16
4

0.
98

±
0.

02
9.

52
-

-
9

1
S5

br
an

ch
in

g
3

1
1

2
16

5
2.

49
±

0.
07

38
.3

7
-

-
17

2
S6

ov
er

vi
ew

(e
xt

)
3

4
4

3
16

4
12

.7
8

±
0.

09
-

-
-

72
3

S7
fo

ld
br

an
ch

es
3

1
1

1
16

4
82

.4
4

±
0.

95
21

8.
51

-
-

13
1

Discourse

A
1

U
se

r#
cl

ea
r_

gl
ob

..
.

3
2

2
3

16
9

2.
11

±
0.

04
-

-
-

24
3

A
2

U
se

r#
ac

ti
va

te
2

(3
)

1
4

2
17

0
8.

95
±

0.
23

-
-

-
28

2
A

3
U

se
r#

un
st

ag
e

3
(4

)
1

5
2

16
4

50
.0

2
±

0.
55

-
-

-
31

2
A

4
U

se
r#

ch
ec

k_
si

te
..

.
5

1
1

2
16

8
51

.6
±

0.
23

-
-

-
28

3

Gitlab

A
5

D
is

cu
ss

io
n#

bu
ild

1
4

4
1

16
7

0.
24

±
0.

01
-

-
-

18
1

A
6

U
se

r#
di

sa
bl

e_
tw

o.
..

1
10

10
1

16
4

0.
25

±
0.

01
-

0.
44

-
22

1
A

7
Is

su
e#

cl
os

e
1

(2
)

3
3

1
16

6
0.

77
±

0.
03

25
.9

9
0.

13
0.

37
15

1
A

8
Is

su
e#

re
op

en
1

(3
)

5
5

1
16

6
3.

68
±

0.
1

-
0.

55
45

.6
6

17
1

Diaspora

A
9

P
od

#
sc

he
du

le
_

..
.

3
(4

)
1

1
2

16
1

2.
44

±
0.

04
-

-
-

19
2

A
10

U
se

r#
pr

oc
es

s_
in

v.
..

1
2

2
2

16
5

2.
64

±
0.

05
0.

81
-

0.
85

12
1

A
11

In
vi

ta
ti

on
C

od
e#

us
e!

1
1

1
1

16
5

4.
23

±
0.

06
-

-
-

12
1

A
12

U
se

r#
co

nfi
rm

_
em

ai
l

7
4

4
2

16
6

7.
28

±
0.

11
-

-
-

31
3

34

Table 2.1 lists the benchmarks. The first column group lists the app name (or

Synthetic for the synthetic benchmarks); the benchmark id; the benchmark name;

and the number of specs. The synthetic benchmarks exercise features of RbSyn by

synthesizing pure methods, methods with side effects, methods in which multiple

branches are folded into a single line program, etc. The Discourse benchmarks include

a number of effectful methods in the User model, such as methods to activate an

user account, unstage a placeholder account created for email integration, etc. The

Gitlab benchmarks include methods that disable two factor authentication for a user,

methods to close and reopen issues, etc. Finally, the Disaspora benchmarks include

methods to confirm a user’s email, accept a user invitation, etc.

We derived the specs for the non-synthetic benchmarks directly from the unit

tests included in the app. We split each test into setup and postcondition blocks in

the obvious way, and we added an appropriate type annotation to the synthesis goal.

Across all benchmarks, we started with a base set of constants (Σ in § 2.3) to be true,

false, 0, 1 and the empty string. Then we added nil and singleton classes (for calling

class methods) on a per benchmark basis as needed. (As with many enumerative

search based methods, we rely on the user to provide the right set of constants.)

A few apps have several different unit tests with exactly the same setup but

different assertions in the postcondition. We merged any such group of tests into a

single spec with that setup and the union of the assertions as the postcondition, to

ensure that every spec setup can be distinguished with a unique branch condition,

if necessary. We indicate this in the # Specs column of Table 2.1 by listing the

final number of specs followed by the original number of tests in parentheses if they

differ. We report the minimum and maximum number of assertions over all specs per

benchmark in the Asserts columns and the number of paths through the method in

the true canonical solution (from the app) in the # Orig Paths column.

35

Annotations for Benchmarks. Finally, the # Lib Meth column lists the number

of library methods available during synthesis. These are methods for which we

provided type-and-effect annotations. In total, 164 such methods are shared across

all benchmarks, including, e.g., ActiveRecord and core Ruby libraries. Since our

benchmarks are sourced from full apps, they often also depend on some other methods

in the app. We wrote type-and-effect annotations for such methods and included

those annotations only when synthesizing that app. Since RbSyn needs to run the

synthesized code, when running specs we include the code for both general-purpose

methods, such as those from ActiveRecord, and required app-specific methods. We

slightly modify the set of library methods for A9, as discussed further below.

To find effect labels for app-specific methods, we found examining the method

name and quickly scanning its code was typically quite helpful. Often it was clear if a

method was pure or impure. For impure methods, there were a few cases. Sometimes,

methods access the same object fields irrespective of how the method is called, so we

give such methods the most precise labels, e.g., the effect InvitationCode.count was

used for benchmark A10. Other times, it is apparent the method accesses different

fields of a class depending on the method’s arguments or the global state, so we give

these class effect labels, e.g., User (equivalent to User.*). Overall, the simplicity of

the effect system helped here, as we could use human-readable region identifiers even

without any object references, e.g., the effect InvitationCode.count abstracts over

all possible instances of InvitationCode class.

The other main category of effect labels was for Rails libraries such as ActiveRecord.

We constructed these labels by following the documentation. For metaprogramming-

generated column accessor methods, we extended RDL’s existing type generating

annotations [88] to also generate effects. For example, when RDL creates the type

signature for an accessor method Post#title for the title column of the Post table, it

now also creates a read effect annotation Post.title for it.

36

Overall, we found writing effect annotations to be easier than our previous efforts

writing type annotations for Ruby [88, 57], though of course we relied on that previous

experience. We leave a systematic evaluation of the effort of writing effect annotations

to future work.

2.5.2 Synthesis Correctness and Performance

RbSyn successfully synthesized methods that pass the specs for every benchmark.

We manually examined the output and found that the synthesized code is equivalent

to the original, human-written code, modulo minor differences that do not change

the code’s behavior in practice. For example, one such difference occurs with original

code that updates multiple database columns with a single ActiveRecord call, and

then has a sequence of asserts to check that each updated column is correct. Because

RbSyn considers the effects of assertions in the postcondition one by one, it instead

synthesizes a sequence of database updates, one per column. Another difference occurs

in Gitlab, which uses the state_machine gem (an external package) to maintain an

issue’s state (closed, reopened, etc). RbSyn synthesizes correct implementations that

work without the gem.

The middle group of columns in Table 2.1 summarizes RbSyn’s running time. We

set a timeout of 300 seconds on all experiments. The first column reports performance

numbers for the full system as the median and semi-interquartile range (SIQR) of

11 runs on a 2016 Macbook Pro with a 2.7GHz Intel Core i7 processor and 16GB

RAM. The next three columns show the median performance when RbSyn uses only

type-guidance, only effect-guidance, and naive enumeration, respectively. The SIQRs

(omitted due to space constraints) for these runs are very small compared to the

median runtime, similar to the performance numbers with all features enabled. We

discuss the runs with certain guidance disabled in detail in § 2.5.3. The right-most

group of columns shows the synthesized method size (in terms of number of AST

37

nodes) and the number of paths through the method (1 for straight-line code).

Overall, RbSyn runs quickly, with around 80% of benchmarks solving in less than

9s. Benchmarks like A3 take longer because it requires synthesis of nil terms—recall

nil is the bottom element of our type lattice, causing RbSyn to synthesize nil

at every typed hole for method arguments. Consequently, this requires testing all

completed candidates—even though they eventually fail—consuming significant time.

For one benchmark, A9, we changed the set of default library methods slightly due

to some pathological behavior. This benchmark includes an assertion that invokes

ActiveRecord’s reload method, which touches all fields of that record. But then when

RbSyn tries to find matching write effects, it explores a combinatorial explosion of

writes to different subsets of the fields. This effort is almost entirely wasted, because

the remainder of the assertion looks at only one particular field—but that one read is

subsumed by the effect of the reload, making it invisible to RbSyn’s search. As a

result, synthesis for A9 slows down by two orders of magnitude. We addressed this

by removing four ActiveRecord methods that manipulate specific fields and adding

ActiveRecord’s update! method as the only way to write a field back to the database.

An alternative approach would have been to move the reload call to be outside the

assertion.

As this example shows, and as is common with many synthesis problems, perfor-

mance is very hard to predict. Indeed, we can see from Table 2.1 that performance is

generally not well correlated with either the size of the output program or with the

number of branches. The number of assertions (which direct the side effect guided

synthesis) does not correlate with the synthesis time. We do observe that RbSyn’s

branch merging strategy is effective, often producing fewer conditionals than there

are specs, e.g., in A12 there are seven specs but only three conditionals. Though,

sometimes the results are not always optimal if the branch merging strategy finds a

program that passes all tests, but a program with fewer branches exists, e.g., for A4

38

0 25 50 75 100 125 150 175 200
Time (s)

1

4

7

10

13

16

19

of

 b
en

ch
m

ar
ks

TE Enabled
E Only
T Only
TE Disabled
Synthetic
Apps

Figure 2.8: Number of benchmarks synthesized using type-and-effect (TE Enabled)
guided synthesis relative to using only type (T Only) or effect (E Only) guidance
separately and naive enumeration (TE Disabled). Higher is better.

and A12, RbSyn produces a program with one more branch than the hand-written.

2.5.3 Performance of Type- and Effect-Guidance

Next, we explore the performance benefits of type- and effect-guidance. Figure 2.8

plots the running times from Table 2.1 when all features of RbSyn are enabled

(TE Enabled), with only type-guidance (T Only), with only effect-guidance (E Only)

and with neither (TE Disabled). The plot shows the number of benchmarks that

complete (y-axis) in a given amount of time (x-axis), based on the median running

times. This experiment serves as a proxy to show how a synthesis procedure that uses

type-guidance but not effect-guidance, such as SyPet [31] or Myth [76, 37], may

have performed if adapted for Ruby.

We can clearly see that type- and effect-guided synthesis performs best, successfully

synthesizing all benchmarks; the slowest takes 83s. In contrast, with both strategies

disabled, all but three small benchmarks time out. Performance with only type- or only

39

290
300

S2 S1 S4 S3 S5 A9 A6 A1 S7 A5 A10 A7 A2 A12 S6 A4 A8 A11 A3
Benchmarks

0

20

40

60

80
Ti

m
e

(s
)

Precise Effects
Class Effects
Purity Effects

Figure 2.9: Performance of RbSyn with varying effect annotation precision: full, class
effects only, and purity annotations on library methods. Lower is better. Full height
indicates timeout.

effect-guidance lies in between. With only type-guidance, synthesis completes on eight

benchmarks, of which the majority are pure methods from the synthetic benchmarks.

From apps, it only synthesize A7 and A10. In these benchmarks, the needed effectful

expressions are small and hence can be found with essentially brute-force search. With

only effect-guidance, synthesis performance significantly worse, completing only five

benchmarks, of which only three are from apps. These benchmarks succeeded because

effect-guided synthesis quickly generates the template for the effectful method calls

and then correctly fills them since they are small and can be found quickly by naive

enumeration.

2.5.4 Effect Annotation Precision vs. Performance

Finally, we explore the tradeoff between effect annotation precision and synthesis

performance. Recall that we found writing effect annotations easier for our benchmarks

than writing type annotations. However, the effort can be further minimized by writing

less precise annotations. This will not affect correctness, since RbSyn only accepts

40

synthesis candidates that pass all specs, but it does affect performance.

Figure 2.9 plots the median of synthesis times for benchmarks over 11 runs under

three conditions: Precise Effects, which are the effects used above; Class Effects,

in which annotations include only class names and eliminate region labels (e.g.,

Post.title becomes Post); and Purity Effects, in which the only effect annotations

are pure or impure (the • and ∗ effects, respectively, in our formalism). The benchmarks

(x -axis) are ordered in increasing order of time for Purity Effects, then Class Effects,

and finally Precise Effects.

From these experiments, we see that synthesis time increases as effect annotation

precision decreases, often leading to a timeout. Class labels were sufficient to synthesize

16 of 19 benchmarks. Overall, class labels take time similar to precise labels, except

for the three cases (A8, A11, and A3) where side-effecting method calls require precise

labels to quickly find the candidate. As all precise effects are reduced to class effects,

RbSyn must try many candidates with class effect before finding the correct one,

leading to timeouts.

We note that A1 and A4 are slightly faster when using class effects. The reason is an

implementation detail. The effect holes in these benchmarks can only be correctly filled

by methods whose regular annotations are class annotations (more precise annotations

are not possible). However, when trying to fill holes, RbSyn first tries all methods

with precise annotations, only afterward trying methods with class annotations. Since

the precise annotations never match, this yields worse performance under the precise

effect condition than under the class effect condition, when the search could by chance

find the matching methods sooner.

Purity labels only enabled synthesis of 9 benchmarks, including just 3 of 12 app

benchmarks. The purity annotations are slow in general and only effective in the cases

where the number of impure library methods is small.

41

2.6 Related Work

Component-Based Synthesis. Several researchers have proposed component-

based synthesis, which creates code by composing calls to existing APIs, as RbSyn does.

For example, [55] propose synthesis of loop-free programs for bit-vector manipulation.

Their approach uses formal specifications for synthesis, in contrast to RbSyn, which

uses unit tests. Hoogle+ [54] uses Haskell tests and types to synthesize potential

solutions, primarily geared towards API discovery. CodeHint [39] synthesizes Java

programs, using a probabilistic model to guide the search towards expressions more

often used in practice. SyPet [31] also synthesizes programs that use Java APIs, by

modeling them as a petri net and using SAT-based techniques to find a solution. These

approaches do not support synthesis of programs with branches, which are common in

the domain of web apps. While SyPet supports synthesis with side-effecting methods

and CodeHint detects undesirable side effects during the search and avoids them,

RbSyn uses side effect information from test cases to guide the search.

Programming by Example. Myth [76, 37] uses bidirectional type checking to

synthesize programs, using input/output examples as the specification. However,

Myth expects examples to be trace complete, meaning the user has to provide

input/output examples for any recursive calls on the function arguments. RbSyn

does not synthesize recursive functions, as they are rarely needed in our target domain

of Ruby web apps. Escher [1] and spreadsheet manipulation tools [46, 51, 47] all

accept input/output examples as a partial specification for synthesis. These tools

primarily target users who cannot program, whereas RbSyn is targeted towards

programmers. In addition, RbSyn’s specs are full unit tests, so they can check both

return values and side effects. λ2 [34] synthesizes data structure transformations using

higher-order functions, a feature not handled by RbSyn because of our target domain

of Rails web apps, which rarely use such functions. STUN [2] uses a program merging

42

strategy that is similar to ours, but it depends on defining domain-specific unification

operators to safely combine programs under branches. In contrast, our approach may

be more domain-independent, using preconditions and tests to find correct branch

conditions. There have been multiple approaches to synthesizing database programs

[20, 32]. Perhaps the closest in purpose to RbSyn is Scythe [108], which synthesizes

SQL queries based on input/output examples. Scythe uses a two-phased synthesis

process to synthesize an abstract query, after which enumeration is used to concretize

the abstract query. In contrast, the use of comp types [57] allows RbSyn to quickly

construct a template for a database query. With precise types for the method argument

holes, this essentially builds abstract queries for free, whose holes are then filled later

during synthesis.

Solver-Aided Synthesis. In solver-aided synthesis, synthesis specifications are

transformed to a set of constraints for a SAT or SMT solver. Synquid [80] uses

polymorphic refinement types as the specification for synthesis. Lifty [82] is a

similar type system that verifies information flow control policies and synthesizes

program repairs as needed to satisfy the policies. Both Synquid and Lifty synthesize

conditionals using logical abduction. In contrast, RbSyn uses branch merging to

synthesize conditionals, since translating Rails code and libraries into logical formulas

is impractical.

Sketch [98] allows users to write partial programs, called sketches, where the

omitted parts are then synthesized by the tool. Migrator [111] uses conflict-driven

learning [33] to synthesize raw SQL queries, for use in database programs for schema

refactoring. In contrast, programs synthesized by RbSyn use ActiveRecord to access

the database. Rosette [102, 101] is a solver-aided language that provides access to

verification and synthesis. It relies on symbolic execution, and thus requires significant

modeling of external libraries for synthesizing programs that use such libraries.

43

eusolver [3] synthesizes programs with branches, using an information-gain

heuristic via decision tree learning. While, the decision tree learning procedure can

produce branches in an enumerative search setting (provided the input/output example

set is complete), we leave an exploration of how it compares to our rule-based merging

to future work. However, eusolver requires a SMT solver to produce counterexamples

to build the input/output example set which has the additional cost of requiring

formal specifications of library method semantics, an impractical task in the Rails

setting. SuSLik [81] synthesizes heap-manipulating programs using separation logic to

precisely model the the heap. RbSyn, in contrast, uses very coarse effects to track

accesses that can go beyond the heap, such as database reads and writes.

2.7 Conclusion

We presented RbSyn, a system for type- and effect-guided program synthesis for

Ruby. In RbSyn, the synthesis goal is described by the target method type and a

series of specs comprising preconditions followed by postconditions that use assertions.

The user also supplies the set of constants the synthesized method can use, and

type-and-effect annotations for any library methods it can call. RbSyn then searches

for a solution starting from a hole □ : τ typed with the method’s return type,

inserting (write) effect holes ♢ : ϵ derived from the read effects of failing assertions.

Finally, RbSyn merges together solutions for individual specs by synthesizing branch

conditions to select among the different solutions as needed. We evaluated RbSyn by

running it on a suite of 19 benchmarks, 12 of which are representative programs from

popular open-source Ruby on Rails apps. RbSyn synthesized correct solutions to all

benchmarks, completing synthesis of 15 of the 19 benchmarks in under 9s, with the

slowest benchmark solving in 83s. We believe RbSyn demonstrates a promising new

approach to synthesizing effectful programs.

44

Chapter 3

Anosy: Approximated Knowledge

Synthesis with Refinement Types for

Declassification

3.1 Introduction

Information flow control (IFC) [92] systems protect the confidentiality of sensitive data

during program execution. They do so by enforcing a property called non-interference

which ensures the absence of leaks of secret information (say, a user location) through

public observations (say, information being sent to the network socket).

Real-world programs, however, often need to reveal information about sensitive

data. For instance, a location based web application needs to suggest restaurants

or friends that are nearby the Secret user location. Such computations, which leak

information about the Secret location, would be prevented by IFC systems that

enforce non-interference. To support them, IFC systems provide declassification

statements [93] that can be used to weaken non-interference by allowing the selective

disclosure of some Secret information.

45

Declassification statements, however, are typically part of an application’s trusted

computing base and developers are responsible for properly declassifying information.

In particular, mistakes in declassification statements can easily compromise a system’s

security because declassified information bypasses standard IFC checks. Implementing

declassification statements can be difficult for developers to implement correctly.

For example, [19] showed that non-Personally Identifiable Information (PII) in an

advertising system could be combined to uniquely identify and target an individual.

Developers may declassify seemingly non-sensitive non-PII, but accidentally leak

sensitive information about a person’s identity. Instead of trusting the developer to

correctly declassify information, an alternative approach is to enforce declassification

policies [21] that regulate the use of declassification statements.

In this chapter, we present Anosy, a framework for enforcing declassification

policies on IFC systems where policies regulate what information can be declassified [93]

by limiting the amount of information an attacker could learn from the declassification

statements. Specifically, declassification policies are expressed as constraints over

knowledge [8], which semantically characterizes the set of secrets an attacker considers

possible given the prior declassification statements. To enforce such policies, we

develop (1) a novel encoding of knowledge approximations using Liquid Haskell’s [104]

refinement types which we use to (2) automatically synthesize correct-by-construction

knowledge approximations for Haskell queries. We then (3) implement and (4) evaluate

a knowledge tracking and policy enforcing declassification function that can easily

extend existing IFC monadic systems. Next, we discuss these four contributions in

detail.

Verified knowledge approximations We define a novel encoding for knowledge

approximations over abstract domains using Liquid Haskell (§ 3.4). The novelty of

our encoding is that approximation data types are indexed by two predicates that

46

respectively capture the properties of elements inside and outside of the domain. Using

these indexes, we encode correctness of over- and under-approximations, without

using quantification, permitting SMT-decidable verification. With this encoding,

we implement and machine check Haskell approximations of two abstract domains:

intervals over multi-dimensional spaces (where each dimension is abstracted using

an interval) and powersets on these intervals, that increase the precision of our

approximations. This verified knowledge encoding is general and can be used, beyond

declassification, also as building block for dynamic [44, 28], probabilistic [100, 68, 43,

62], and quantitative policies [9, 61].

Synthesis of knowledge approximations We develop a novel approach for auto-

matically synthesizing correct-by-construction posteriors given any prior knowledge

and user-specified boolean query over multi-dimensional integer secret values (§ 3.5).

Our approach combines type-based sketching with SMT-based synthesis and it is

implemented as a Haskell compiler plugin, i.e., it operates at compile-time on Haskell

programs. Given a user-defined query, Anosy generates a synthesis template (a

so-called sketch) where the values of the abstract domain elements are left as holes

to be filled later with values, combined with the correctness specification encoded

as refinement types. It then reduces the high-level correctness property into integer

constraints on bounds of the abstract domain elements and uses an SMT solver to

synthesize optimal correct-by-construction values. Replacing these values in the sketch,

Anosy synthesizes Haskell executable programs of the approximated knowledge and

automatically checks their correctness with Liquid Haskell.

Enforcing declassification policies We implement a policy-based declassification

function that can be used by any monadic Haskell IFC framework (§ 3.2, § 3.3). In

this setting, users write declassification policies as Haskell functions that constrain

the (approximated) attacker knowledge, whereas declassification queries are written

47

as regular Haskell functions over secret data. At compile time, Anosy synthesizes

and verifies the knowledge approximations for all declassification queries. At runtime,

declassification is called in the AnosyT monad that tracks knowledge over multiple

declassification queries and checks, using the synthesized knowledge approximations,

whether performing the declassification would lead to violating the user-specified

policy. Importantly, AnosyT is defined as a monad transformer, thus can be staged on

top of existing IFC monads like LIO [99] and STORM [64].

Evaluation We evaluated precision and running time of Anosy using two bench-

marks (§ 3.6). First, we compared with Prob’s [68] benchmark suite to conclude that

Anosy is slower but more precise. Second, to demonstrate Anosy enables secure

declassification of sequential queries, we evaluate how many queries Anosy allows

to declassify before a policy violation. For the interval abstract domain, we found a

policy violation was detected after a maximum of 7 queries and after 14 queries for

the more precise powerset domain.

3.2 Overview

We start by motivating the need for declassification policies (§ 3.2.1): repeated

downgrades can weaken non-interference until leaking the secret is allowed. Next, we

present how the knowledge revealed by queries can be computed (§ 3.2.2). Finally

(§ 3.2.3), we describe how Anosy synthesizes correct-by-construction knowledge, by

combining refinement types, SMT-based synthesis, and metaprogramming.

3.2.1 Motivation: Bounded Downgrades

Secure Monads IFC systems, e.g., LIO [99] and LWeb [77], define a secure monad

to ensure that security policies are enforced over sensitive data, like a user’s physical

48

location. For instance here, we define the data type UserLoc to capture the user

location as its x and y coordinates.

data UserLoc = UserLoc {x :: Int, y :: Int}

A Secure monad will return such a location wrapped in a protected “box” to ensure

that only code with sufficient privileges can inspect it. For example, a function that

gets the user’s location will return a protected value:

getUserLoc :: User → Secure (Protected UserLoc)

In the LIO monad, for example, data are protected by a security label data type

and the monad ensures, based on the application, that only the intended agents can

observe (or unlabel) the user’s exact location.

Queries A query is any boolean function over secret values. As an example, we

consider the user location to be the secret value and the nearby function below checks

proximity to this secret value from (x_org, y_org).

type S = UserLoc

nearby :: (Int, Int) → S → Bool

nearby (x_org, y_org) (UserLoc x y)

= abs (x - x_org) + abs (y - y_org) ≤ 100

where abs i = if i < 0 then -i else i

The nearby query is using Manhattan distance to check if a user is located within 100

units of the input origin location.

Downgrades Even though locations protected by the Secure monad cannot be

inspected by unprivileged code, in practice many applications need to allow selective

leaks of secret information to unprivileged code. For instance, many web applications

need to check location of users to provide useful information, such as restaurant, friend,

or dating suggestions that are physically nearby the user.

49

(a) Posteriors on x = 200, 300,
400 and y = 200. (b) Indistinguishability Sets (c) Under-Approximation

Figure 3.1: Posteriors, Indistinguishability Sets and their Approximations with respect
to nearby query.

The showAdNear function below shows a restaurant advertisement to the user only

if they are nearby. To do so, the function uses downgrade (from the Secure monad)

to downgrade (to public) the result of the nearby check over the protected user

location.

downgrade :: Protected S → (S → Bool)

→ Secure Bool

showAd :: User → Restaurant → Secure ()

showAdNear :: User → Restaurant → Secure ()

showAdNear user res = do

ul ← getUserLoc user

isNear ← downgrade ul (nearby (res_loc res))

if isNear then showAd user res else return ()

Downgrades are a common feature of real-world IFC systems. For example, in LIO

downgrades happen with the unlabelTCB trusted codebase function, which is exposed

to the application developers. At the same time, downgraded information bypasses

security checks by design. In the code above, isNear is unprotected and can now

be leaked to an attacker. Therefore, declassification statements need to be correctly

placed to avoid unintended leaks of information that would bypass IFC enforcement.

50

Declassification knowledge To semantically characterize the information declas-

sified by downgrades, we use the notion of attacker knowledge [8], i.e., the set of

secrets that are consistent with an attacker’s observations, where attackers can observe

the results of downgrade. That is, we consider the worst-case scenario where any

declassified information is always leaked to an attacker. This knowledge can be refined

by consecutively running downgrade queries and ultimately can reveal the exact value

of the secret. In the example below, a piece of code downgrades two queries asking if

the user is located nearby to both (200,200) and (400,200) to infer if the exact user

location is (300,200) .

secret ← getUserLoc user

kn1 ← downgrade secret (nearby (200,200))

kn2 ← downgrade secret (nearby (400,200))

−− if kn1 ∧ kn2, then secret = (300,200)

The posterior is the knowledge obtained after executing a query. Consider again the

code above. If nearby (200,200) is true, the knowledge after the first downgrade

statement is the green region of Figure 3.1a. Using this information as prior knowledge

for the second downgrade query, which asks nearby (400,200) , might result in a

knowledge containing only the user location (300,200) , i.e., the intersection of the

green and red posterior knowledge regions.

Quantitative Policies A quantitative policy is a predicate on knowledge which,

for instance, ensures that the accumulated knowledge is not specific enough, i.e., the

secret cannot be revealed. As an example, qpolicy below states that the knowledge

should contain at least 100 values.

qpolicy dom = size dom > 100

This policy will allow declassifying nearby (200,200) and nearby (300,200) ,

since the intersections of the green and blue regions in Figure 3.1a contain at least 100

51

potential locations, but not nearby (400,200) since the resulting knowledge contains

exactly one secret.

Bounded Downgrade We define a bounded downgrade operator that allows the

computation of queries on secret data, while enforcing quantitative policies. For

example, the operator tracks declassification knowledge during an execution and allows

downgrading the nearby (200,200) and nearby (300,200) queries, but terminates

with an error on the sequence of nearby (200,200) and nearby (400,200) .

The downgrade operation is the method of the AnosyT monad (§ 3.3) which is

defined as a state monad transformer. As a state monad, it preserves the protected

secret, the quantitative policy, and the prior declassification knowledge. To downgrade

a new query, the monad checks if the posterior knowledge of this query satisfies the

policy. If not, it terminates with a policy violation error. Otherwise, it updates

the knowledge to the posterior and returns the query result. Since AnosyT is also a

monad transformer, it can be combined with existing security monads, which provide

the underlying IFC enforcement mechanism, to enrich them with extra quantitative

guarantees on the inevitable downgrades.

3.2.2 Approximating knowledge from queries

Precisely computing, representing, and checking quantitative policies over a (potentially

infinite) knowledge requires reasoning about all points in the input space, which is an

uncomputable task in general. So, we use abstract domains (here intervals [24]) to

approximate knowledge.

Indistinguishability sets The proximity query nearby (200,200) partitions the

space of secret locations into two partitions (for the two possible responses: True and

False), called indistinguishability sets (ind. sets), i.e., all secrets in each partition

produce the same result for the query. Figure 3.1b depicts the two ind. sets for our

52

query. The inner diamond—depicted in light gray—is the ind. set for the result True,

i.e., all its elements respond True to the query. In contrast, the outer region—depicted

in dark gray—is the ind. set for False. Figure 3.1c depicts the under-approximated

(i.e., subset) ind. sets for the query as defined by under_indset :

data AInt = AInt {lower :: Int, upper :: Int}

data A = A [AInt]

under_indset :: (A, A)

under_indset = (A [AInt 121 279, AInt 179 221],

A [AInt 0 400, AInt 0 99])

The data AInt abstracts integers as intervals between a lower and an upper value. A

is our abstract knowledge data type that is defined as a list of abstract integers, which

can be used to abstract data with any number of integer fields. The under_indset

is a tuple, where the first element corresponds to the True response and the second

element to the False response. It says all secrets in x ∈ [121, 279] and y ∈ [179, 221]

evaluate to True for the query and all secrets in x ∈ [0, 400] and y ∈ [0, 99] evaluate

to False.

Knowledge under-approximation. We use ind. sets to compute the posterior

knowledge after the query, i.e., the set of secrets considered possible after observing

the query result. To do so, we simply take the intersection ∩ of the prior knowledge

with the ind. sets associated with the query [8, 9]. If the intersection happens with the

exact ind. sets, then we derive the exact posterior. For our example, we intersect with

the under-approximate ind. set to produce an under-approximation of the posterior

knowledge i.e., an under-approximation of the information learned when observing

the query result.

underapprox :: A → (A, A)

underapprox p = (p ∩ trueInd, p ∩ falseInd)

53

where (trueInd, falseInd) = under_indset

The intersection ∩ refers to the set-theoretic intersection of two domains. We formally

define these operations in § 3.4.

3.2.3 Verification and Correct-by-Construction Synthesis of

Knowledge

Our goal is to generate a knowledge approximation for each downgrade query, which as

shown by our nearby example is a strenuous and error prone process. To automate this

process Anosy uses refinement types, metaprogramming, and SMT-based synthesis to

automatically generate correct-by-construction knowledge approximations of queries

in four steps. First, for each query Anosy generates a refinement type specification

that denotes knowledge approximation. Next, it uses metaprogramming to generate a

partial program, called a sketch, i.e., a function definition with holes (to be eventually

substituted with terms) that computes the knowledge. Then, it uses an SMT solver

to fill in the integer value holes in the sketch. Finally, it delegates to Liquid Haskell’s

refinement type checker to verify that our synthesized knowledge indeed satisfies its

specification.

Here, we explain a simplified version of these steps for our nearby (200,200)

example query.

Step I: Refinement Type Specifications Anosy uses abstract refinement types

to index abstract domains with a predicate that all its elements should satisfy (§ 3.4).

For example, A <{\l → 0 < l}> denotes the abstract domain whose elements are

positive values. Using this abstraction, Anosy specifies the ind. set and knowledge

approximations:

under_indset :: (A <{\l → nearby l}>,

A <{\l → ¬ nearby l}>)

54

underapprox :: p: A

→ (A <{\x → nearby x ∧ (x ∈ p)}>,

A <{\x → ¬ nearby x ∧ (x ∈ p)}>)

under_indset returns a tuple of abstract domains. The first abstract domain can only

contain elements that satisfy the query and the second that falsify it. The function

underapprox computes the posterior given some prior knowledge p. The posterior is

further refined to contain only elements that originally existed in the prior knowledge.

Step II: Sketch Generation Using syntax directed meta-programming Anosy

defines underapprox as in § 3.2.2 to be the intersection of the ind. set and the prior

knowledge. For the definition of the ind. set it relies on the secret type to be translated

to generate a sketch with integer value holes. Since UserLoc contains two integer

fields, the sketch [98] for under_indset is the following, where all l and u are holes:

under_indset = (A [AInt lt1 ut1, AInt lt2 ut2],

A [AInt lf1 uf1, AInt lf2 uf2])

Step III: SMT-Based Synthesis Finally, it combines the refinement type with the

program sketch to generate, using an SMT solver, solutions for the integer holes (§ 3.5).

By combining values from the above sketch for under_indset with its refinement type,

the below constraints are generated:

∀x, y. lt1 ≤ x ≤ ut1 ∧ lt2 ≤ y ≤ ut2 =⇒ nearby(x, y) (Under-approx, True)

∀x, y. lf1 ≤ x ≤ uf1 ∧ lf2 ≤ y ≤ uf2 =⇒ ¬nearby(x, y) (Under-approx, False)

The first constraint indicates all points in the domain should satisfy the nearby

function, whereas the second constraint means the all points inside the domain should

not satisfy the nearby function. The definition of nearby (200,200) and the abs

55

function is mechanically translated to logic as follows:

query(x, y) = abs(x− 200) + abs(y − 200) ≤ 100

abs(i) = if i < 0 then − i else i

These constraints have multiple correct solutions, but, for precision, Anosy prefers

the tightest bounds. Specifically, when under-approximating, it aims for the maximal

domain that satisfies the above two constraints. Anosy uses Z3 [14] as the SMT

solver of choice because it supports optimization directives for maximizing u1− l1 and

u2− l2 together, for both the true and false cases. Finally, it uses the SMT synthesized

solutions to fill in the holes and derive complete programs, like the under_indset

of § 3.2.2.

Step IV: Knowledge Verification Anosy uses LiquidHaskell to verify the synthe-

sized result. To achieve this step, we implemented (§ 3.4) verified abstract domains for

intervals and their powersets that, as shown in our evaluation § 3.6, greatly increase the

precision of the abstractions. These implementations are independent of the synthesis

step and can be used to verify manually user-written, knowledge approximations as

well.

3.3 Bounded Downgrade

Here we present the bounded downgrade operation, first by an example that showcases

how downgrades that violate the quantitative declassification policy are rejected, next

by providing its exact implementation, and finally by showing correctness of policy

enforcement.

56

Bounded Downgrade by Example The bounded downgrade function checks,

before running a downgrade query using the underlying Secure monad, that the

approximation of the revealed knowledge satisfies the quantitative policy. To do so,

it preserves a state that maps each secret that has been involved in downgrading

operations to its current knowledge. As an example, below we present how the

knowledge is updated to prevent the example from § 3.2.1.

secret ← lift (getUserLoc user)

−− secret = Protected (UserLoc 300 200)

−− secrets = []

r1 ← downgrade secret "nearby (200,200)"

−− secrets = [(secret, post1 = {121...279,179...221})], |post1| = 6837

r2 ← downgrade secret "nearby (300,200)"

−− secrets = [(secret, post2 = {221...279,179...221})], |post2| = 2537

r3 ← downgrade secret "nearby (400,200)"

−− secrets = [(secret, post3 = {∅ , 179 ... 221})], |post3| = 0

−− Policy Violation Error

The user location is taken by lifting the getUserLoc function of the underlying

monad (any computation of the underlying monad can be lifted). Assume that the

user is located at (300,200) . Originally, there is no prior knowledge for this secret

(and protected) location, i.e., the secrets map associating secrets to knowledge

approximations is empty. After downgrading the nearby (200,200) query (which as

we will explain next, is passed to downgrade as a string) we get the posterior post1

with size 6837. Since this size is greater than 100, the qpolicy (defined in § 3.2.1) is

satisfied and the result of the query (here true) is returned by the bounded downgrade.

Similarly, downgrade of the nearby (300,200) query refines the posterior to size 2537.

But, when downgrading the nearby (400,200) query the posterior size becomes zero,

thus our system will refuse to perform the query (and downgrading its result) and

return a policy violation error, instead of risking the leak of the secret.

57

Definition of Bounded Downgrade Figure 3.2 presents the definition of the

bounded downgrade function. It takes as input a protected secret, which should be

able to get unprotected by an instance of the Unprotectable class, a string that

uniquely determines the query to be executed, and returns a boolean value in the

AnosyT state monad transformer [66]. As discussed in § 3.2.1, we used a transformer

to stage our downgrade on top of an existing secure monad.

The state of Anosy AState contains the quantitative policy, the map secrets of

secret values to their current knowledge, and the map queries that maps strings that

represent queries to query information QInfo that, in turn, contain both the query

itself and an under-approximation function (like the synthesized underapprox) that

given the prior knowledge approximates the posterior, after the query is executed.

Even though tracking of multiple secrets is permitted, we require all the secrets and

abstractions to have the same type; this limitation can be lifted using heterogeneous

collections [59].

Having access to this state, downgrade will throw an error if it cannot find the

query information of the string input, since it has no way to generate the posterior

knowledge1. Then, it will compute the posterior and throw an error if it violates the

quantitative policy. Otherwise, it will update the posterior of the secret and return

the result of the query. Note that detection of violations of the quantitative policy is

independent of the actual secret value.

Correctness: Policy Enforcement Suppose a secret s that has been downgraded

n times by the queries query1, . . . , queryn. After each downgrade, the knowledge is

refined. So, starting from the top knowledge (K0
.
= ⊤), after n queries, the knowledge

evolves as follows: K0 ⊆ K1 ⊆ · · · ⊆ Ki ⊆ · · · ⊆ Kn, where Ki = Ki−1∩{x | queryi x =

queryi s}.

We can show that for each i-th downgrade of the secret s, there exists a posterior
1On-the-fly synthesis albeit possible would be very expensive.

58

type AnosyT a s m = StateT (AState a s) m

data AState a s = AState {
policy :: a → Bool,
secrets :: Map s a,
queries :: Map String (QInfo a s)}

data QInfo a s = QInfo {
query :: s → Bool,
approx :: p: a

→ (a <{\x → query x ∧ (x ∈ p)}>,
a <{\x → ¬ query x ∧ (x ∈ p)}>)}

class Unprotectable p where
unprotect :: p t → t

downgrade :: (Monad m, Unprotectable protected
, AbstractDomain a s) −− Defined in § 4.1

⇒ protected s
→ String −− (s → Bool)
→ AnosyT a s m Bool

downgrade secret’ qName = do
st ← get
let qinfo = lookup qName (queries st)
if isJust qinfo then do

let secret = unprotect secret’
let prior = fromMaybe ⊤

$ lookup secret (secrets st)
let (QInfo query approx) = fromJust qinfo
let (postT, postF) = approx prior
if policy st postT ∧ policy st postF then do

let response = query secret
let posterior = if response then postT

else postF
modify $ \st → st {secrets =

insert secret posterior (secrets st)}
return $ response

else throwError "Policy Violation"
else throwError ("Can’t downgrade " ++ qName)

Figure 3.2: Implementation of bounded downgrade.

59

Pi so that (s,Pi) is in the secrets map and also Pi is an under-approximation of

the knowledge Ki, that is Pi ⊆ Ki. The proof goes by induction on i, assuming that

the attacker and the downgrade implementation start from the same ⊤ knowledge,

and the inductive step relies on the specification of the approx function and the way

downgrades modifies secrets , i.e., using postT or postF depending on the response

of the query.

Thus if our quantitative policy enforces a lower bound on the size of the leaked

knowledge, (e.g., qpolicy dom = size dom > k) it is correctly enforced by downgrade :

since Pi ⊆ Ki, then qpolicy Pi implies qpolicy Ki at each stage of the execution.

Note that for correctness of policy enforcement, the policy should be an increasing

function in the size of the input for underapproximations. The exact definition of

such a policy domain specific language is left as a future work. Further, even though

our implementation can trace knowledge overapproximations, we have not yet studied

applications or policy enforcement for this case. Last but not least, it is important

that the policy is checked irrespective of the query result, i.e., on both postT and

postF, to prevent potential leaks due to the security decision.

Security Guarantees Anosy enforces declassification policies that limit the amount

of information an attacker can learn from declassification statements. For this, Anosy

directly checks that downgrades are bounded (§3.3) and it relies on the underlying

security monad to ensure that the adversary’s knowledge remains constant, i.e., there

are no leaks, between two downgrade s. As a result, the underlying security monad

needs to enforce termination-sensitive non-interference. Alternatively, one can use

a monad enforcing termination-insensitive non-interference, such as LIO [99], and

additionally prove termination, e.g., using Liquid Haskell’s termination checker.

60

class AbstractDomain a s where
⊤ :: a <{_ → True , _ → False}>
⊥ :: a <{_ → False, _ → True }>
∈ :: s → a → Bool
⊆ :: a → a → Bool
∩ :: d1:a <p1, n1> → d2:a <p2, n2>

→ {d3:a <p1∧p2, n1∨n2> | d1 ⊆ d3 ∧ d2 ⊆ d3}
size :: a → {i:Int | 0 ≤ i}
−− class laws
sizeLaw :: d1:a → {d2:a | d1 ⊆ d2}

→ {size d1 ≤ size d2}
subsetLaw :: c:s → d1:a → {d2:a | d1 ⊆ d2}

→ {c ∈ d1 ⇒ c ∈ d2}

Figure 3.3: Abstract Domain Type Class

3.4 Refinement Types Encoding

We saw that our bounded downgrade function is correct, if each query is coupled

with a function approx that correctly computes the underapproximation of posterior

knowledge. Here, we show how refinement types can specify correctness of approx , in

a way that permits decidable refinement type checking. First (§ 3.4.1), we define the

interface of abstract domains as a refined type class that in § 3.4.2 we use to specify

the abstractions of ind. sets and knowledge. Next, we present two concrete instances

of our abstract domains: intervals (§ 3.4.3) and powersets of intervals (§ 3.4.4).

3.4.1 Abstract Domains

Figure 3.3 shows the AbstractDomain a s refined type class interface stating that

a can abstract, i.e., represent a set of values of, s. For example, an instance

instance AbstractDomain AI UserLoc states that the data type AI (that we will

define in § 3.4.3) abstracts UserLoc (of § 3.2.1). The interface contains method defini-

tions and class laws, and when required the abstract domain is indexed by abstract

refinements.

61

Class Methods The class contains six, standard, set—theoretic methods. Top (⊤)

and bottom (⊥), respectively represent the full and empty domains. Member c ∈ d

tests if the concrete value c is included in the abstract domain d. Subset d1 ⊆ d2 tests

if the abstract domain d1 is fully included in the abstract domain d2. Intersect d1 ∩ d2

computes an abstract domain that includes all the concrete values that are included

in both its input domains. Finally, size d computes the number of concrete values

represented by an abstract domain.

Class Laws We use refinement types to specify two class laws that should be

satisfied by the ⊆ and size methods. sizeLaw states that if d1 is a subset of d2, then

the size of d1 should be less than or equal to the size of d2. subsetLaw states that

if d1 is a subset of d2, then any concrete value in d1 is also in d2. These methods

have no computational meaning (i.e., they return unit) but should be instantiated

by proof terms that satisfy the denoted laws. Even though we could have expressed

more set-theoretic properties as laws, these two were the ones required to verify our

applications.

Abstract Indexes In the types of top, bottom, and intersection, the type a is

indexed by two predicates p and n (both of type s → Bool). The positive predicate

p describes properties of concrete values that are members of the abstract domain.

Dually, the negative predicate n describes properties of the values that do not belong

to the abstract domain. Intuitively, the meaning of these predicates is the following:

a <p,n> ~ {d:a | ∀x. x∈d ⇒ p x ∧ ∀x. x̸∈d ⇒ n x}

Yet, the right-hand side definition is using quantifiers which lead to undecidable

verification. Instead, we used abstract refinements [103] and the left-hand side

encoding, to ensure decidable verification.

The specification of the full domain ⊤ states that the positive predicate is True,

i.e., all elements belong to the domain, and the negative False, i.e., no elements are

62

outside of the domain. Similarly, the empty domain ⊥ has a False positive predicate,

i.e., no elements are in the domain, and True negative predicate, i.e., all elements

can be outside the domain. Finally, the type signature for intersect d1 ∩ d2 returns a

domain d3 whose positive predicate indicates it includes elements included in d1 and

d2 i.e., p1∧p2. The negative predicate indicates points excluded from d3 are points

excluded from either d1 or d2, i.e., n1∨n2. The refinement on d3 ensure that d3 is a

subset ⊆ of both d1 and d2. For abstract types in which these two predicates are

omitted, the _ → True predicate is assumed, which we will from now on abbreviate

as true and imposes no verification constraints.

3.4.2 Approximations of ind. sets and knowledge

In Figure 3.4, we use the positive and negative abstract indexes to encode the

specifications of over- and under-approximations for ind. sets and knowledge. We

assume concrete types for a and s with an instance AbstractDomain a s and a

query on the secret. (In the previous sections for simplicity, we omitted the negative

predicates and overapproximations.)

Approximations of ind. sets A query’s ind. sets is a tuple whose first element is

an abstract domain that represents secrets that satisfying the query and the second

element is an abstract domain that represents secrets that falsify the query.

The specification of the ind. sets under_indset says the first domain only includes

secrets for which the query is True and the second domain only includes secrets for

which the query is False (the positive predicates). The negative predicates do not

impose any constraints on the elements that do not belong to the domain. This means

the domains can exclude any number of secrets, as long as the secrets that are included

are correct, i.e., it is an under-approximation.

Dually, the over-approximation over_indset sets the negative predicate to exclude

63

query :: s → Bool

under_indset :: (a <{\x → query x, true}>,
a <{\x → ¬ query x, true}>)

over_indset :: (a <{true, \x → ¬ query x}>,
a <{true, \x → query x}>)

underapprox :: p:a →
(a <{\x → query x ∧ (x ∈ p), true}>,
a <{\x → ¬ query x ∧ (x ∈ p), true}>)

underapprox p = (dT ∩ p,dF ∩ p)
where (dT,dF) = over_indset

overapprox :: p:a →
(a <{true, \x → ¬ query x ∨ (x ̸∈ p)}>,
a <{true, \x → query x ∨ (x ̸∈ p)}>)

overapprox p = (dT ∩ p,dF ∩ p)
where (dT,dF) = over_indset

Figure 3.4: Specifications of Approximations for concrete a and s that instantiate
AbstractDomain.

all points for which the query evaluates to False for the domain corresponding to the

True response and the second domain (corresponding to the False response) excludes

all points for which the query evaluates to False. The positive predicates are just

true. The domains can include any number of secrets as long as they are not leaving

out any secrets that are correct, i.e., it is an over-approximation.

Approximations of knowledge By combining the prior knowledge of the at-

tacker with the ind. set for the query, we derive an approximation of the attacker’s

knowledge after they observe the query. Figure 3.4 shows the specifications for the

knowledge under-approximation underapprox and the over-approximation overapprox .

underapprox is similar to the type of under_indset , except the positive predicate is

strengthened to express that all the elements of the domain should also belong to

the prior knowledge p. Similarly, overapprox specifies that the elements that do not

belong in the posterior knowledge, should neither be in the prior nor the ind. set.

Each approximation is implemented by a pair-wise intersection with the respective

64

ind. sets and can be verified thanks to the precise type we gave to intersection.

Precision The refinement types ensure our definitions are correct, but they do

not reason about the precision of the abstract domains. For example, the bottom

and top domains are vacuously correct solutions for under- and over-approximations,

respectively. But, these domains are of little use as ind. sets, since they ignore all the

query information. It is unclear if precision can be encoded using refinement types.

Instead, we empirically evaluate precision in § 3.6.

3.4.3 The Interval Abstract Domain

Next we define AI , the interval abstract domain that can abstract any secret type S,

constructed as a product of integers (like the UserLoc of § 3.2) or types that can be

encoded to integers (e.g., booleans or enums). AI is defined as follows:

−− S = Int × Int × ...

data AInt = AInt {lower :: Int, upper :: Int}

type Proof p x = {v:S<p> | v = x }

data AI <p::S → Bool, n::S → Bool>

= AI { dom :: [AInt]

, pos :: x:{S| x ∈ dom } → Proof p x

, neg :: x:{S| x ̸∈ dom } → Proof n x }

| ⊤I { pos :: x:S → Proof p x }

| ⊥I { neg :: x:S → Proof n x }

AI has three constructors. ⊤I and ⊥I respectively denote the complete and empty

domains. AI represents the domain of any n-dimensional intervals, where n is the

length of dom. An interval AInt represents integers between lower and upper. For

a secret s = s1 × s2 × . . . sn, an AI represents each si by the ith element of its

dom (si ∈ (dom!i)) in the n dimensional space. For example, domEx = [(AInt 188

65

212), (AInt 112 288)] is the rectangle of x ∈ [188, 212] and y ∈ [112, 288] in the two

dimensional space of UserLoc .

Proof Terms The pos and neg components in the AI definition are proof terms

that give meaning to the positive p and negative n abstract refinements. The complete

domain ⊤I contains the proof field pos that states that every secret s should satisfy

the positive predicate p (i.e., x: S → Proof p x) and the empty domain contains only

the proof neg for the negative predicate n. Due to syntactic restrictions that abstract

refinements can only be attached to a type for SMT-decidable verification [103], the

proof terms are encoded as functions that return the secret, while providing evidence

that the respective predicates are inhabited by possible secrets. In AI this is encoded

by setting preconditions to the proof terms: the type of the pos field states that each

s that belongs to dom should satisfy p, while the neg field states that each x that does

not belong to dom should satisfy n.

When an AI is constructed via its data constructors, the proof terms should be

instantiated by explicit proof functions. For example, below we show that the domEx

(described above) only represents elements that are nearby (200,200) .

example :: AI <{\s → nearby (200,200) s, true}>

example = AI domEx exPos (\x → x)

exPos :: s:{UserLoc | s ∈ domEx }

→ {o:UserLoc | nearby (200,200) s ∧ o = s}

exPos (UserLoc x y) = UserLoc x y

The proof term exPos is an identity function refined to satisfy the pos specification.

Once the type signature of exPos is explicitly written, Liquid Haskell is able to

automatically verify it. Automatic verification worked for all non-recursive queries,

but for more sophisticated properties (e.g., in the definition of the intersection function)

66

we used Liquid Haskell’s theorem proving facilities [106] to establish the proof terms.

Importantly, when AI is used opaquely (like in approx in Figure 3.4), the proof terms

are automatically verified.

AbstractDomain Instance We implemented the methods of the AbstractDomain

class for the AI data type as interval arithmetic functions lifted to n-dimensions. ∈

checks if any secret is between lower and upper for every dimension. ⊆ checks if the

intervals representing the first argument is included in the intervals representing the

second argument. ∩ computes a new list of intervals to represent the abstract domain,

that includes only the common concrete values of the arguments. Size just computes

the number of secrets in the domain, which can be interpreted as the domain’s volume.

Our implementation consists of 360 lines of (Liquid) Haskell code, the vast majority of

which constitutes explicit proof terms for pos and neg fields and the class law methods.

By design, AI uses a list to abstract secrets that are sums of any number of elements,

thus this class instance can be reused by an Anosy user to abstract various secret

types.

3.4.4 The Powersets of Intervals Abstract Domain

To address the internal imprecision of the interval abstract domains, we follow the

technique of [84, 10] and define the powerset abstract domain AP, i.e., a set of interval

domains. Similar to intervals, the powerset AP is also parameterized with the positive

and negative predicates:

data AP <p::S → Bool, n::S → Bool> = AP {

domi :: [AI] , domo :: [AI]

, pos :: x:{S| x ∈ domi ∧ x ̸∈ domo} → Proof p x

, neg :: x:{S| x ̸∈ domi ∨ x ∈ domo} → Proof n x }

AP contains four fields. domi is the set (represented as a list) of intervals that are

67

contained in the powerset. domo is the set of intervals that are excluded from the

powerset. This representation backed by two lists gives flexibility to define powersets

by writing regions that should be included and excluded, without sacrificing generality

or correctness (as guaranteed by our proofs). Moreover, this encoding of the powerset

makes our synthesis algorithm simpler (§ 3.5). The proof terms provide the boolean

predicates that give semantics to the secrets contained in the powerset, similar to the

interval abstract domain (§ 3.4.3). We do not need a separate top ⊤ and bottom ⊥

for AP as they can be represented using ⊤I or ⊥I in the pos list.

AbstractDomain Instance We implemented the methods of the AbstractDomain

class for the powerset abstraction in 171 lines of code. A concrete value belongs to

(∈) the powerset AP if it belongs to any individual interval of the domi list but not to

any individual interval of the domo list. The subset d1 ⊆ d2 operation checks if each

individual interval in the inclusion list domi of d1 is a subset of at least one interval

in the inclusion list domi of d2 and also that none of the individual intervals in the

exclusion list domo of d1 is a subset of any interval in domo of d2. This operation returns

True if the first powerset is a subset of the second, but if it returns False it may or

may not be powerset. We have not found this to be limiting in practice, as this criteria

is sufficient for verification. We plan to improve the accuracy via better algorithms

in future work. Intersection d1 ∩ d2 produces a new powerset, whose inclusion list is

made of pairwise intersecting intervals from domi of d1 and domi of d2 and the exclusion

interval list is simply the union of all intervals in the individual exclusion lists domo of

d1 and domo of d2. Size is the sum of the size of all intervals in the inclusion list minus

the size of all intervals in the exclusion list.

68

3.5 Synthesis of Optimal Domains

We use synthesis in Anosy to automatically generate ind. sets that satisfy the

correctness types of Figure 3.4 for each downgrade query. Our synthesis technique

proceeds in three steps: first, Anosy extracts the sketch of the posterior computation

(§ 3.5.2). Second, it translates this to SMT constraints with relevant optimization

directives to synthesize the abstract domains (§ 3.5.3). Finally, the SMT synthesis is

iterated to allow synthesis of powersets of any size (§ 3.5.4). To efficiently perform

these synthesis steps using SMT, we used a very restrictive form of the query language

(§ 3.5.1).

3.5.1 The query language

The queries analyzed by Anosy are Haskell functions that take one input, of the

secret type, and return a boolean: query :: s → Bool (as per Figure 3.4).

For algorithm and efficient synthesis and verification, all the queries we tried are

restricted to linear arithmetic, bool-eans, and data types that have a direct, syntactic

translation to SMT functions restricted to decidable logic fragments. Concretely,

the queries can call other functions that belong to the same fragment, but recursive

definitions of queries are rejected by Anosy.

Supporting other query classes The query language can be easily extended

to support non-boolean queries with finitely many outputs. This can be done by

computing one ind. set per possible output. Further, our secrets currently and for

simplicity are restricted to integer products, but they can be easily extended to

other domains with decidable decision procedures (e.g., datatypes). Extensions to

undecidable secret types (e.g., floating points, strings) has unclear implications and is

deferred to future work.

69

3.5.2 Synthesis Sketch

We use syntax-directed synthesis by starting with a partial program i.e., sketch [98],

for the ind. sets based on their type specifications in Figure 3.4. For example, the

sketch for the under-approximate ind. sets would be:

under_indset = (□::A <{\x → query x, true}>,

□::A <{\x → ¬ query x, true}>)

Following the structure of the type we simply introduce typed holes of the form

□::τ for each abstract domain, which for this case is (refined) A.

3.5.3 Synth: SMT-based Synthesis of Intervals

We define the procedure Synth that given a typed hole of an abstract domain, the

number of fields in the secret n, and the kind of approximation (over or under),

it returns a solution, i.e., an abstract domain that satisfies the hole’s type. As an

example, consider the below solution to first typed hole of under_indset . All l and u

are symbolic integers.

□ :: AI <{\x → query x, _ → True}>

□ = AI dom pos neg

dom = [AInt l1 u1, ..., AInt ln un]

The above solution is using the AI applied to the domain list dom and the pos

and neg proof terms. The proof terms for our (non recursive) queries follow concrete

patterns (as the example of § 3.4.3) and are generated from syntactic templates. The

dom is a list of ranges AInt that contains symbolic integers as lower (li) and upper

(ui) bounds, while the length n of the list is the number of fields of the secret data

type.

To find concrete values for the symbolic integers li and ui, Synth mechanically

generates SMT implications based on the type indexes. Since the positive index states

that all elements x on the domain should satisfy query x and the negative index

70

states that all elements outside of the domain should satisfy True, the following SMT

constraint is mechanically generated:

∀ x. (x∈ dom ⇒ query x) ∧ (x ̸∈ dom ⇒ True)

Such constraints (see § 3.2.3 for a concrete example) are sent to the SMT, by a

direct, syntactic translation of the Haskell instance method ∈ and the query definitions

into Z3 functions (§ 3.5.1).

Solving such constraints gives us a value for dom if a solution exists. In practice,

however, such solutions are often just a point, i.e., the abstract domain contains

only one secret. Although this is a correct solution, it is not precise. To increase

precision we add optimization directives to constraints depending on the type of our

approximation. That is, for i ∈ {1 . . . n} we add maximize ui - li or minimize ui -

li for under-approximations and over-approximations respectively. These optimization

constraints are handed to an SMT solver that supports optimization directives [14]

and the produced model is an intended solution for dom. We used the Pareto optimizer

of Z3 [14], such that no single optimization objective dominates the solution. For

example, if two domains of sizes 400× 1 and 20× 20 are valid solutions, Anosy will

prefer the latter.

3.5.4 IterSynth: Iterative Synthesis of PowerSets

Powerset abstract domains (§ 3.4.4) are synthesized by Algorithm 2 that iteratively

increments the powersets with individual intervals to avoid scalability problems faced

by Z3 when optimizing multiple intervals at once.

The algorithm takes as arguments the number of intervals k to be included in the

powerset, the number of fields in the secret n, the refinement type of the powerset

domain τ , and the kind of approximation apx (under or over). It first runs Synth

(§ 3.5.3) to generate the first interval, with the top level type properly propagated

to the hole. If this is for an under-approximation, more such intervals can be added

71

Algorithm 2 Iterative Synthesis of Powersets
1: procedure IterSynth(k, n, τ , apx)
2: dom_i ← [Synth (AP [□] [] _ _)::τ n apx]
3: dom_o ← []
4: for i = 2 to k do
5: if apx == under then
6: dom_t ← Synth (AP (dom_i ++ □) dom_o _ _)::τ n apx
7: dom_i ← dom_i ++ [dom_t]
8: else
9: dom_t ← Synth (AP dom_i (dom_o ++ □) _ _)::τ n apx

10: dom_o ← dom_o ++ [dom_t]
11: end if
12: end for
13: return (AP dom_i dom_o _ _)
14: end procedure

to the powerset to boost the precision. Conversely, if the first synthesized interval is

an over-approximation, then more intervals can be eliminated from the powerset to

return a more precise over-approximation. At each iteration, the algorithm creates

a new placeholder interval □ and Synth solves it, incrementally building up the

inclusion list dom_i, or the exclusion list dom_o. Finally, the powerset is returned after

k iterations. This is Anosy’s general synthesis algorithm since for k = 1 the returned

powerset has a single interval.

As a final step, the returned powerset is lifted to the Haskell source and substituted

in the sketch in § 3.5.2, which as a sanity check is validated by Liquid Haskell.

Discussion Traditional abstract interpretation based techniques will refine the do-

mains, as the query is evaluated with small step semantics, leading to imprecision at

each step. In contrast, Anosy is more precise (as we show in § 3.6), because the final

abstract domain is synthesized in the final step after accumulating constraints. How-

ever, Z3 does not give precise solutions when there are too many maximize/minimize

directives (more than 6 in our experience) and it does not handle non-linear objectives

well. We leave exploration of better optimization algorithms to future work.

72

3.6 Evaluation

We empirically evaluated Anosy’s performance using two case studies. In the first one

(§ 3.6.1), we analyze efficiency and precision of Anosy when verifying and synthesizing

ind. sets using a set of micro-benchmarks from prior work. In the second one (§ 3.6.2),

we use the Anosy monad to construct an application that performs multiple queries

(similar to those of § 3.2) while enforcing a security policy on the attacker’s knowledge.

With this case study, we evaluate how losses of precision introduced by Anosy’s

abstract domains affect the ability of answering multiple queries.

Experimental setup Anosy is a GHC plugin built against GHC 8.10.1. All

refinement types were verified with LiquidHaskell 0.8.10. Z3 4.8.10 was used to

synthesize the bounds of the abstract domains. All experiments were performed on a

Macbook Pro 2017 with 2.3 GHz Intel Core i5 and 8GB RAM.

3.6.1 Verification & Synthesis of ind. sets

In this case study, we analyze the Anosy’s performance with respect to the verification

and synthesis of ind. sets.

73

U
nd

er
-a

pp
ro

xi
m

at
io

n
O

ve
r-

ap
pr

ox
im

at
io

n

#
Si

ze
%

di
ff.

V
er

if.
ti

m
e

Sy
nt

h.
ti

m
e

Si
ze

%
di

ff.
V

er
if.

ti
m

e
Sy

nt
h.

ti
m

e

B
1

25
9

/
96

20
0

/
27

2.
78
±

0.
03

1.
11
±

0.
01

25
9

/
13

50
5

0
/

2
2.

64
±

0.
03

1.
07
±

0.
01

B
2

2.
21

e+
05

/
1.

01
e+

07
78

/
58

3.
62
±

0.
02

9.
26
±

0.
04

2.
02

e+
06

/
2.

54
e+

07
10

0
/

5
3.

17
±

0.
02

4.
00
±

0.
12

B
3

4
/

66
4

0
/

25
3.

12
±

0.
06

0.
90
±

0.
07

4
/

88
8

0
/

0
2.

83
±

0.
03

0.
90
±

0.
01

B
4

3.
53

e+
04

/
1.

35
e+

05
10

0
/

10
0

3.
66
±

0.
04

20
.9

2
±

0.
11

9.
22

e+
12

/
2.

81
e+

13
67

20
0

/
0

3.
29
±

0.
08

10
.8

7
±

0.
01

B
5

36
0

/
5.

04
e+

06
83

/
25

3.
81
±

0.
04

1.
38
±

0.
04

35
46

0
/

6.
72

e+
06

15
42

/
0

3.
47
±

0.
04

0.
89
±

0.
01

(a
)

In
te

rv
al

ab
st

ra
ct

do
m

ai
n

U
nd

er
-a

pp
ro

xi
m

at
io

n
O

ve
r-

ap
pr

ox
im

at
io

n

#
Si

ze
%

di
ff.

V
er

if.
ti

m
e

Sy
nt

h.
ti

m
e

Si
ze

%
di

ff.
V

er
if.

ti
m

e
Sy

nt
h.

ti
m

e

B
1

25
9

/
13

24
6

0
/

0
4.

51
±

0.
05

1.
13
±

0.
02

25
9

/
13

50
5

0
/

2
4.

34
±

0.
03

1.
08
±

0.
01

B
2

6.
78

e+
05

/
1.

62
e+

07
33

/
33

5.
32
±

0.
09

14
.3

4
±

0.
11

1.
80

e+
06

/
2.

54
e+

07
78

/
5

5.
17
±

0.
02

4.
89
±

0.
09

B
3

4
/

88
0

0
/

0
5.

29
±

0.
09

1.
07
±

0.
03

4
/

88
8

0
/

0
4.

99
±

0.
03

1.
03
±

0.
01

B
4

3.
88

e+
05

/
4.

00
e+

05
10

0
/

10
0

5.
78
±

0.
03

54
.8

9
±

0.
23

9.
22

e+
12

/
2.

81
e+

13
67

20
0

/
0

5.
48
±

0.
08

30
.5

7
±

0.
07

B
5

72
0

/
6.

70
e+

06
67

/
0

6.
02
±

0.
07

13
.2

6
±

0.
09

63
00

/
6.

72
e+

06
19

2
/

0
5.

96
±

0.
04

15
.2

5
±

0.
03

(b
)

P
ow

er
se

t
of

in
te

rv
al

s
w

it
h

si
ze

3

Fi
gu

re
3.

5:
In

d.
se

ts
sy

nt
he

si
s

an
d

ve
ri

fic
at

io
n

of
po

st
er

io
rs

.
C

ol
um

n
Si

ze
re

po
rt

s
th

e
si

ze
of

th
e

sy
nt

he
si

ze
d

in
d.

se
ts

,w
he

re
x

is
th

e
si

ze
of

th
e
Tr

ue
se

t
an

d
y

of
th

e
Fa

ls
e

se
t

in
x
/y

.
%

di
ff

sh
ow

s
th

e
pe

rc
en

ta
ge

di
ffe

re
nc

e
of

th
e

si
ze

fr
om

pr
ec

is
e

in
d.

se
t

in
Ta

bl
e

3.
1

(l
ow

er
va

lu
e

is
be

tt
er

).
V
er

if.
tim

e
an

d
Sy

nt
h.

tim
e

co
lu

m
ns

re
po

rt
(i

n
se

co
nd

s)
th

e
m

ed
ia

n
an

d
th

e
se

m
i-i

nt
er

qu
ar

ti
le

ov
er

11
ru

ns
.

74

Table 3.1: Number of fields in the secret, and size of the precise ind. sets x/y for our
benchmarks, where x and y denotes the number of secrets that evaluate to True and
False, respectively.

Name No. of fields Size of ind. sets

B1 Birthday 2 259 / 13246
B2 Ship 3 1.01e+06 / 2.43e+07
B3 Photo 3 4 / 884
B4 Pizza 4 1.37e+10 / 2.81e+13
B5 Travel 4 2160 / 6.72e+06

Benchmark Programs Our benchmarks consist of 5 problems from [68], which

represent a diverse set of queries (B3 and B4 come from a targeted advertisement case

study from Facebook [23]). We selected these benchmarks to illustrate that Anosy

supports similar classes of queries as existing prior work and to compare performance

and precision with available tools.

(B1) Birthday checks if a user’s birthday, the secret, is within the next 7 days of a

fixed day2.

(B2) Ship calculates if a ship can aid an island based on the island’s location and the

ship’s onboard capacity.

(B3) Photo checks if a user would be possibly interested in a wedding photography

service by checking if they are female, engaged, and in a certain age range.

(B4) Pizza checks if a user might be interested in ads of a local pizza parlor, based on

their birth year, the level of school attended, their address latitude and longitude

(scaled by 106).

(B5) Travel tests for a user interest in travels by checking if the user speaks English,

has completed a high level of education, lives in one of several countries, and is

older than 21.
2We only use the deterministic version of the Birthday problem.

75

For each problem, we encode the query as a Haskell function with the appropriate

refinement type [105] where the secret domain is represented as a Haskell datatype

for which we use the same bounds as [68]. Table 3.1 reports the number of fields in

the secret, and the size of the precise ind. sets for each benchmark as x/y, where x

denotes the size of the precise ind. set for the True response from query and y is the

size when the query responds False.

Experiment For each benchmark, we use Anosy to (1) synthesize the under- and

over-approximated ind. sets for both results True and False and (2) verify that the

synthesized approximations match the refinement types from § 3.4. We run each

benchmark 11 times to collect synthesis and verification times. We use a 10 second

timeout for each Z3 call. The goal is to evaluate the precision of the synthesized ind.

set and time taken for synthesis and verification to run.

Intervals Figure 3.5a reports the results of our experiments for both the under-

and over-approximated ind. sets using the interval abstract domain. Specifically, the

column Size reports the number of secrets in the approximated ind. set, the column

Verif. time reports the time (in seconds) LiquidHaskell takes to verify the posteriors,

and the column Synth. time reports the time (in seconds) taken for synthesizing

the approximate ind. sets. The % diff. column lists the difference in size of the

approximate ind. sets with the exact ones from Table 3.1. The lower the % diff.

column value, the more precise is the synthesized ind. set, i.e., it is closer to the

ground truth.

For all our benchmarks, LiquidHaskell quickly verifies the correctness of the

posteriors, in less than 4 seconds on average. In some cases, like B1 and B3, Anosy

can synthesize the exact ind. set for the True result using a single interval (for both

approximations). For the False set, however, the tool returns an approximated result

because the precise ind. set is not representable using intervals.

76

In 7 out of 10 synthesis problems, Anosy synthesizes the approximations in less

than 5 seconds. The three outliers are the synthesis of under-approximations for B2

and the synthesis of both approximations for B4. B2 uses a relational query that

creates a dependency between two secret fields, where the multi-objective maximization

employed by Z3 runs longer. B4 uses very large bounds (in the orders of 108) which

result in Z3 quickly finding a sub-optimal model but timing-out before finding an

optimal solution.

Powersets of intervals Figure 3.5b reports the results of our experiments using

the powersets domain with 3 intervals. A higher number gives more precision for

representation of the ind. set at the cost of taking more time for synthesis, due to our

iterative synthesis algorithm (§ 3.5.4).

For under-approximations, Anosy successfully synthesizes both exact ind. sets

for B1 using powersets, even though the False set was not representable using just a

single interval. For B2 and B3, the powersets significantly improve precision, i.e., we

synthesize larger under-approximations.

This can be seen by comparing the % diff. column between Figure 3.5a and 3.5b,

where the latter reports lower percentage differences from ground truth. In fact, for

B3, Anosy can almost synthesize the entire ind. set for False with powersets of

size 3 and it can synthesize the exact ind. set with powersets of size 4 (not shown

in Figure 3.5b). For B4, powersets only marginally improve precision due to SMT

optimization timing out. For over-approximations, we observe a similar increase in

precision, in particular in B3 and B5 where the synthesized approximations are close

to the exact values. B4 slows down drastically because synthesis of each interval takes

almost 10 seconds due to SMT timeouts.

Discussion Anosy synthesizes ind. sets, and a function to compute a posterior for

any prior, incurring one-time cost for synthesis but making posterior computation

77

free at runtime. In contrast, prior tools like Prob [68] need to run an expensive static

analysis each time when computing the posterior knowledge. While the synthesis

takes 54.2x longer on average than running Prob each time, this cost is amortized

over multiples runs of the program with Anosy.

Moreover, Anosy is more precise than Prob, as demonstrated by difference from

ground truth in benchmarks like B3 (Figure 3.5b). A difference of 0 indicates that

Anosy synthesized an exact ind. set. In contrast Prob’s belief was 0.1429 (i.e., had

some uncertainty; 0 is exact) for the same example in same conditions. Anosy is more

precise because it can automatically split regions into intervals (§ 3.5.4) whose union

in the powerset gives a better accuracy. For instance, in Figure 3.5b, a powerset of

size 3 is enough to synthesize the exact ind. set (% diff. is 0) for several benchmarks.

In our experience, iterative synthesis (§ 3.5.4) works better than existing tech-

niques [9, 68] for queries (benchmarks B1, B3, and B5) that contain point-wise

comparisons, i.e., the query checks if a secret x is one of several constant values

c1, c2, . . ., or in other words, formulas of the form x = c1 ∨ x = c2 ∨ These

queries split the indistinguishable sets into a union of disjoint sets, and the SMT

solver efficiently identified the best possible solution for the abstract domain. However,

benchmarks that do not use point-wise comparisons (like B2) perform equivalent to

prior work [68] in our experience.

3.6.2 Secure Advertising System

In this case study, we go back to the advertisement example in § 3.2 which we

implement using Anosy to restrict the information leaked through downgrade . The

goal of this case study is evaluating how the choice of abstract domains affects the

number of declassification queries authorized by Anosy.

78

0 2 4 6 8 10 12 14
Authorized declassification queries

0

2

4

6

8

10

12

14

16

18

In

st
an

ce
s (

di
ffe

re
nt

 e
xe

cu
tio

ns
)

k =
1
3
5
7
10

Figure 3.6: The lines show the number of execution instances (Y-axis) that were
authorized for the i-th declassification query (X-axis). Each line corresponds to the
under-approximated ind. set of powersets of size k.

Application We implemented the advertising query system from § 3.2 in Haskell

using the AnosyT monad, with the UserLoc type as the secret. The system executes a

sequence of 50 queries (one per restaurant branch): we use the nearby query from

§ 3.2 with the origin, denoting in this experiment the location of the restaurant, being

a randomly generated point in the 400× 400 space.

Security policy and enforcement Our program implements the security policy

qpolicy from § 3.2, which restricts the restaurant chain from learning the user location

below a set of 100 possible locations. To easily enforce the security policy, we wrapped

the advertising query in the downgrade operation of AnosyT as in § 3.3.

Initially, our system starts with a prior knowledge equivalent to the entire secret

domain 400× 400 (i.e., the attacker does not have any information about the secret).

As the system executes queries, the AnosyT monad tracks an under-approximation of

79

the attacker’s posterior knowledge based on the query result and on the prior. If the

posterior complies with the policy, then the monad outputs the query result and the

system continues with the next query. If a policy violation is detected, the system

terminates the execution.

Experiment For each experiment, we generate a new user location randomly, used

as the secret, in the 400 × 400 space, and we run through the 50 queries for every

restaurant location. For each execution, we measure after how many queries the

system stops due to a policy violation. We repeat this experiment 20 times, to get the

mean and standard deviation of query count and discuss them below.

Results Figure 3.6 reports the results of our experiments. The line for each k, i.e.,

the number of synthesized intervals in the powerset, depicts the number of experiment

instances that are still running (Y-axis) after executing the i-th query (X-axis). For

example, in the k = 1 powerset (equivalent to an interval), the system was able to

answer the first 3 queries in all 20 instances without violating the policy, but only 2

instances were able to answer the 6th query.

As the size of powersets increases (from 3 to 10), the system can compute more

precise under-approximations and, therefore, securely answer more queries, as can

be seen in the figure. Specifically, for powerset of size k = 3, the system answers

a maximum of 10 queries over 20 runs, with only 1 run reaching the 10th query.

Similarly, the maximum number of queries answered increases to 14, due to increased

precision by using powersets of size 10. Moreover, more than 10 instances answer

more than 6 queries if the size of powersets goes above 3. This shows that Anosy

can be used to build a system, that can answer multiple queries sequentially with

precision without violating the declassification policy.

Figure 3.6 shows a tradeoff between number of queries answered and the precision of

the powersets. Higher sized powersets (k = 7 or 10) under-perform in the intermediate

80

declassifcations from 5 to 7 (on the X-axis) when compared to k = 5. The intersection

of powersets made of k1 and k2 intervals produces a powerset of k1k2 intervals, of

which many intervals are small or empty (as individual powersets might have very

little overlap). Hence a slightly more imprecise powerset k = 5 declassifies allows more

instances of the query to run. However, over a longer sequence of queries a higher

sized powerset performs better due to improved precision in tracking knowledge (as

can be seen from k = 10 allowing 14 declassifcations).

3.7 Related Work

Information-flow control Language-based information-flow control (IFC) [92]

provides principled foundations for reasoning about program security. Researchers

have proposed many enforcement mechanisms for IFC like type systems [18, 7, 85,

65, 29, 91, 82], static analyses [56], and runtime monitors [44] to verify and enforce

security properties like non-interference. The ind. sets and knowledge approximations

computed by Anosy can be used as a building block to enforce both non-interference

as well as more complex security policies, as we discuss below.

Use of knowledge in IFC The notion of attacker knowledge has been originally

introduced to reason about dynamic IFC policies, where the notion of “public” and

“secret” information can vary during the computation [8, 44, 28]. The notion of belief

consists of a knowledge, i.e., set of possible secret values, equipped with a probability

distribution describing how likely each secret is. Existing approaches [100, 68, 43,

62] can enforce security policies involving probabilistic statements over an attacker’s

belief, e.g., “an attacker cannot learn that a secret holds with probability higher than

0.7”. We plan to deal with probability distributions in future work. However, Anosy

synthesizes a function that computes the posterior given a prior, eliminating the need

to run the full static analysis for each query execution. This enables applications to

81

directly use knowledge based policies without expensive static analysis at runtime.

Additionally Anosy’s posterior knowledge is correct-by-construction and mechanically

verified using LiquidHaskell’s refinement types, unlike existing tools [68] which rely on

(often complex) pen-and-paper proofs.

Quantitative Information Flow approaches provide quantitative metrics, e.g., Shan-

non entropy [94], Bayes vulnerability [95], and guessing entropy [69], that summarize

the amount of leaked information. For this, several approaches [22, 9, 61] first compute

a representation of a program’s indistinguishability equivalence relation, whereas we

represent the partition induced by the indistinguishability relation, where each ind.

set is one of the relation’s equivalence classes.

There are several approaches for approximating the indistinguishability relation

in the literature. [22] provide techniques to approximate the indistinguishability

relation for straight line programs. [9] automates the synthesis of such equivalence

relations using program verification techniques, and [61] further improve the approach

by combining it with sampling-based techniques. Similarly to [9], we automatically

synthesize ind. sets from programs. In contrast to [22, 9, 61], the correctness of our

ind. sets is also automatically and machine-checked.

Declassification Declassification is used in IFC systems to selectively allow leaks,

and several extensions of non-interference account for it [8, 44, 28]; we refer the reader

to [93] for a survey of declassification in IFC. Most systems treat declassification

statements as trusted. Our work focuses on the what dimension of declassification,

that is, our policies restrict what information can be declassified. In contrast, [21]

enforce declassification policies that target other aspects of declassification, specifically,

limiting in which context declassification is allowed and how data can be handled after

declassification.

82

Program Synthesis Anosy’s synthesis technique follows sketch-based synthe-

sis [98], where traditionally users provide a partial implementation with holes and

some specifications based on which the synthesizer fills in the holes. Standard types

have extensively served as a synthesis template often combined with tests, examples, or

user-interaction [76, 49, 32, 67]. Refinement types provide stronger specifications, thus,

as demonstrated by Synquid [80], do not require further tests or user information. In

Anosy, we use the refinement type synthesis idea of Synquid, but also mechanically

generate the knowledge specific refinement types.

3.8 Conclusion & Further Applications

We presented Anosy, a novel technique that uses the abstractions of refinement

types to synthesize and statically machine-check correct approximations of knowledge

and ind. sets. Using these approximations of knowledge, we defined a bounded

downgrade function that can be staged on top of existing IFC systems to enforce

declassification policies. We implemented Anosy and demonstrated it runs across a

variety of benchmarks from prior work and can securely answer multiple sequential

queries without losing precision. We believe Anosy represents a promising approach

to embedding declassification policies in applications.

Though we only used Anosy’s precise, explicit representation of knowledge for

declassification, such a representation is at the core of many information flow control

tasks. Enforcing probabilistic policies requires combining knowledge, computed by

Anosy, with a probability distribution [68]. Moreover, dynamic security policies

can be enforced by keeping track of attacker knowledge and comparing it with the

current policy [44]. Finally, approximations of classical quantitative information flow

measures, such as Shannon entropy [94], can be derived from the user’s knowledge,

i.e., by counting the number of concrete elements represented by the knowledge.

83

Chapter 4

Absynthe: Abstract

Interpretation-Guided Synthesis

4.1 Introduction

In recent years, there has been a significant interest in automatically synthesizing

programs from high-level specifications, which often take the form of logical formu-

las [33], type signatures [80], or even input-output examples [37]. Program synthesis

has seen significant success in domains such as spreadsheets [45], compilers [79] or even

database access programs [49]. Much of the prior work, however, requires a complete

and accurate embedding of the source language in the logic of the underlying solver the

synthesis tool uses. These often range from symbolic execution [102], counter-example

guided synthesis [97], or over-approximate semantics as predicates [58, 80, 32] (often

requiring termination measures and additional predicates for verifcation). This is infea-

sible for many industrial-grade languages such as Ruby or Python. Other approaches

are strongly coupled with the semantics of the source language with purpose-built

solvers [90], but this necessarily ties the synthesis engine to the particular language

model used.

84

In this chapter, we propose Absynthe, an alternative approach based on user-

defined abstract semantics that aims to be both lightweight and language agnostic.

The abstract semantics are lightweight to design, simplifying away inconsequential

language details, yet effective in guiding the search for programs. The synthesis engine

is parameterized by the abstract semantics [25] and independent of the source language.

In Absynthe, users define a synthesis problem via concrete test cases and an abstract

specification in some user-defined abstract domain. These abstract domains, and the

semantics of the target language in terms of the abstract domains, are written by the

user in a DSL. Moreover, the user can define multiple simple domains, each defining

a partial semantics of the language, which they can combine together as a product

domain automatically. Absynthe uses these abstract specifications to automatically

guide the search for the program using the abstract semantics. The key novelty of

Absynthe is that it separates the search procedure from the definition of abstract

domains, allowing the search to be guided by any user-defined domain that fits the

synthesis task. More specifically, the program search in Absynthe begins with a hole

tagged with an abstract value representing the method’s expected return value. At

each step, Absynthe substitutes this hole with expressions, potentially containing

more holes, until it builds a concrete expression without any holes. Each concrete

expression generated is finally tested in the reference interpreter to check if it passes

all test cases. A program that passes all tests is considered the solution. (§ 4.2 gives a

complete example of Absynthe’s synthesis strategies).

We formalize Absynthe for a core language Lf and define an abstract interpreter

for Lf in terms of abstract transformer functions. Next, we describe a DSL Lmeta

used to define these abstract transformers. Notably, as Absynthe synthesizes terms

at each step, it creates holes tagged as abstract variables x̃, i.e., holes which will be

assigned a fixed abstract values later. We give evaluation rules for these transformers

written in Lmeta, that additionally narrows these abstract variables to sound range of

85

abstract values. For example, given a specification that requests Pandas programs that

should evaluate to a data frame, a term (□ : x̃1).query(□ : x̃2) is a viable candidate

that queries a data frame. However, semantics of Lmeta help with constraining the

bounds on x̃1 and x̃2 such that these holes are substituted by values of a DataFrame

and String respectively. Finally, we present the synthesis rules used by Absynthe

to generate such terms. Specifically, we discuss how Absynthe specializes term

generation based on the properties of the domain, such as a finite domain enables

enumeration through domain, or a domain that can be lifted to solvers can use solver-

backed operations, or domains expressed as computations not supported by dedicated

SMT solvers. (§ 4.3 discusses our formalism).

We implemented Absynthe as a core library in Ruby, that provides the nec-

essary supporting classes to implement user-specific abstract domains and abstract

interpretation semantics. It further integrates automatic support for ⊤ and ⊥ values

and abstract variables , as well as ProductDomain to combine the individual domains

point-wise. The Absynthe implementation has interfaces to call a concrete interpreter

with a generated program to check if a program satisifies the input/output examples.

Finally, we also discuss some optimizations to scale Absynthe for practical problems,

such as caching small terms and guessing partial programs based on testing predicates

on the input/output examples, and some limitations of the tool. (§ 4.4 discusses our

implementation).

We evaluate Absynthe as a general-purpose tool on a diverse set of synthesis

problems while being at par on performance with state-of-the-art tools. We first use

Absynthe to solve the SyGuS strings benchmarks [5] using simple domains such as

string prefix, string suffix, and string length to guide the search. Though Absynthe

operates with minimal semantic information about SyGuS programs, it still performs

similar to enumerative search solvers such as EuPhony [3], solving most benchmarks

in less than 7 seconds. SMT solvers such as CVC4, or Blaze that rely on precise

86

abstractions perform much faster than Absynthe, but require large specification

effort. We further evaluate the impact of our performance optimizations and verify

that Absynthe’s synthesis cost adjusts with the expressiveness of the domain. More

specifically, the string prefix and suffix domains written in Ruby generate a concrete

candidate 0.41ms average, whereas string length domain being a solver-aided domain

takes around 16.93ms per concrete candidate on average due to calls to Z3. Next,

we use Absynthe synthesize an unrelated benchmark suite, for which it is harder

to write precise formal semantics—Python programs that use Pandas, a data frame

manipulation library. We evaluate Absynthe on the AutoPandas benchmarks [13],

a suite of Pandas data frame manipulating programs in Python. The AutoPandas

tool trains deep neural network models to synthesize Pandas programs. Absynthe is

at par with AutoPandas, including a significant overlap in the benchmarks both

tools can solve, despite using simple semantics such types and column labels of a

data frame while running on a consumer Macbook Pro without specialized hardware

requirements. (§ 4.5 discusses our evaluation).

In summary, we think Absynthe represents an important step forward in the

design of practical synthesis tools that provide lightweight formal guarantees while

ensuring correctness from tests.

4.2 Overview

In this section, we demonstrate Absynthe by using it to synthesize data frame

manipulation programs in Python using the Pandas library [87]. In this example, we

abstract data frames as sets of column names, and use a lightweight type system for

Pandas API methods to effectively guide synthesis.

A data frame is a collection of data organized into rows and columns, similarly to a

database table. Data frame manipulation is a key task in data wrangling, a preliminary

87

id valueA

0 255 1141
1 91 1130
2 347 830
...

...
...

8 225 638
9 257 616

(a) Data frame arg0

id valueB

0 255 1231
1 91 1170
2 5247 954
...

...
...

12 211 575
13 25 530

(b) Data frame arg1

id valueA valueB

0 255 1141 1231
1 91 1130 1170
2 347 830 870
5 159 715 734
8 225 638 644

(c) Output data frame

1 'valueA != valueB'

(d) Query string arg2

1 def goal(arg0, arg1, arg2):
2 return arg0.merge(arg1, on=['id']).query(arg2)

(e) Synthesized program

Figure 4.1: Data Frame Manipulation Example [13]. The synthesis goal is to produce (c)
given inputs (a), (b), and a query string (d). Absynthe synthesizes the solution (e).

step for data science or scientific computing tasks. For example, Figure 4.1 shows

a data frame manipulation synthesis task taken from the AutoPandas benchmark

suite [13]. The goal is to use the Python Pandas library [87] to produce the data frame

in Figure 4.1c, given the two input data frames in Figure 4.1a and 4.1b and a query

string (Figure 4.1d). In this case, the output joins the input rows with the same id

but with different values in valueA and valueB columns. The Pandas library provides

a wide range of methods that perform complex data frame manipulation. For example,

calling left.merge(right, on: [’col’]) joins the data frames left and right on

column col. As another example, calling df.query(str) returns a new data frame

with the rows of df that satisfy query string predicate str (as in Figure 4.1d).

To keep the synthesis task tractable, Absynthe restricts its search to Python

code consisting of input variables arg0 through arg2; constants such as column names

’id’, ’valueA’, and ’valueB’ or row labels 0, 1, . . ., 13 from the data frames; array

literals and indexing; and dictionaries (for keyword arguments). Additionally, for this

discussion we will limit Absynthe to the merge and query methods just mentioned,

even though our evaluation (§ 4.5.2) supports many more methods. Nonetheless,

88

even with this restricted search space, naïve enumeration of possible solutions times

out after 20 minutes. In contrast, using Absynthe, we can guide the search using

abstract interpretation to find a solution in 0.47 seconds.

Abstract Domains and Semantics The first step in using Absynthe is to identify

appropriate abstract domains for the abstract interpretation and implement the

abstract semantics. Typically, we develop the domain by looking at the input/output

examples and thinking about the problem domain. In our running example, we observe

that the data frames use columns id, valueA, and valueB, but each frame has a

slightly different set of columns. This gives us the idea of introducing a domain

ColNames that abstracts data frames to a set of column labels.

Abstract values, drawn from an abstract domain, represent a set of concrete values

in the program. The abstract semantics define the evaluation rules of the program

under values from this abstract domain. This approach has seen considerable success

in practical static analysis tools such as ASTREÉ [26] and Sparrow [73]. Figure 4.2a

shows, similar to these tools, the definition of the ColNames domain, which is a

class whose instances are domain values. Absynthe is implemented in Ruby, and

Absynthe domains subclass AbstractDomain, which provides foundational definitions

such as ⊤ and ⊥ (see § 4.4). A value in the ColNames domain stores the set of columns

it represents in the instance variable @cols, which by line 2 can be read with an

accessor method cols. All abstract domains require a partial ordering relation ⊆ on

the domain that returns true if and only if the first columns label set (rhs.cols) is a

subset of the second set (@cols). Finally, the ∪ method returns a new abstract value

containing the union of the column names of the two arguments. The ∪ method is

optional, however we define this as it will be used in the abstract semantics.

After defining the abstract domain, next we need to define the abstract interpreter

to give semantics to the target language in our abstract domain. Figure 4.2b defines

89

1 class ColNames < AbstractDomain
2 attr_reader :cols
3 def initialize(cols)
4 @cols = cols.to_set
5 end
6

7 def ⊆(rhs)
8 rhs.cols.subset?(@cols)
9 end

10

11 def ∪(rhs)
12 ColNames.new(@cols∪rhs.cols)
13 end
14 end

(a) ColNames Domain

1 class ColNameInterp < AbsInterp
2 def self.interpret(env, prog)
3 # details omitted for brevity
4 end
5

6 def self.pd_merge(left,right,opt)
7 left ∪ right
8 end
9

10 def self.pd_query(df, pred)
11 df
12 end
13 end

(b) ColNames Abstract Semantics

1 class PyType < AbstractDomain
2 attr_reader :ty
3

4 def initialize(ty)
5 @ty = ty
6 end
7

8 def ⊆(rhs)
9 @ty <= rhs.ty

10 end
11 end

(c) PyType Domain

1 class PyTypeInterp < AbsInterp
2 def self.pd_merge(left,right,opt)
3 DataFrame if left ⊆ DataFrame ∧
4 right ⊆ DataFrame ∧
5 opt ⊆ {on: Array<String>}
6 end
7

8 def self.pd_query(df, pred)
9 DataFrame if df ⊆ DataFrame ∧

10 pred ⊆ String
11 end
12 end

(d) PyType Abstract Semantics

Figure 4.2: Abstract domain definition for column names domain (a) and types domain
definition (c). Abstract semantics for the required methods are defined in (b) using
ColNames domain and (d) using PyType domain.

90

the abstract interpreter for ColNames domain as ColNameInterp class. All abstract

interpreters are defined as a subclass of AbsInterp class, provided by Absynthe. It

needs a definition of the interpret class method (the preceding self. denotes it is a

class method), that given an environment env, and a term prog reduces it to a value

of type ColNames. The interpret is a standard recursive interpreter, so we omit

the definition of interpret for brevity. Then we define the pd_merge and pd_query

class methods that define the operations for the Pandas merge and query methods

on values from ColNames domain. A call to left.merge(right, opt) in the source

term under abstract interpretation is computed via a call pd_merge(abs(left),

abs(right), abs(opt)), where abs() indicates the abstract values of the arguments.

In the column name abstraction, we only need to compute the column names of the

resulting data frame, which is just the union of the column names of the input data

frame (line 7). Notice the opt argument can be ignored, as it impacts how the data

frames are merged in the concrete domain, but the set column names of the final data

frame is unaffected. Similarly, a call to df.query(pred) is abstractly evaluated via

a call to pd_query(abs(df), abs(pred)). Since the data frame returned by query

has the same columns as its input data frame, pd_query simple returns the abstract

data frame df (line 11).

Absynthe can also combine multiple domains together pointwise. We observe that

the Pandas API methods expect values of a specific type. Hence, we also introduce a

PyType abstract domain as a lightweight type system for Python. Figure 4.2c defines

the abstract domain, which stores a type in the @ty field as a type from RDL [36], a

Ruby type system. We build on RDL for representing Python types because it comes

with built-in representations for nominal types, generic types, etc. and a subtyping

relation between them. The ⊆ method for PyType simply calls the subtyping method

≤ of RDL types. The subtyping method ≤ is a special-case of the partial ordering

relation ⊆.

91

Figure 4.2d defines gives the abstract semantics for merge and query in the PyType

domain. The method pd_merge checks that the types of left and right are subtypes

of DataFrame, i.e., the type that represents Pandas data frames as shown in Figure 4.1,

and that opt is a dictionary with a key on that admits an array of strings. If this check

is satisfied, the return type is DataFrame. Otherwise, pd_merge returns nil, which

Absynthe interprets as ⊤, i.e., any value is possible. Note, in a type checker, if the

arguments do not match the expected types a type error occurs. Here, in contrast, we

are computing what would be a valid abstraction, and since we don’t have a specific

type we can assume ⊤, i.e., anything can happen. Later, during synthesis the search

procedure will appropriately do the pruning by type-checking when it is provided a

user specification. pd_query also checks if the receiver is a subtype of DataFrame and

the query string is a String. If so, it returns DataFrame, otherwise it returns nil.

These domains are combined together using a ProductDomain class, provided

by Absynthe. Here we write × to pair elements from the ColNames domain and

the PyType domain. For example, {’id’, ’valueA’ } × DataFrame denotes all data

frames that have the columns ’id’ and ’valueA’. The ProductDomain also comes

with a ProductInterp that evaluates product domain values with respective individual

semantics and combines these into a final product abstract value.

Synthesizing Solutions An Absynthe synthesis problem is specified by giving

input/output examples for the synthesized function. Synthesis begins by abstractly

interpreting the input/output examples to compute an abstract signature for the

function. We have automated this for the AutoPandas benchmark suite. The upper-

right corner of Figure 4.3 gives the abstract signature for out example. In particular,

the first argument is a DataFrame with columns ’id’ and ’valueA’; the second

argument is a DataFrame with columns ’id’ and ’valueB’; and the third argument

is a String and has no columns. The synthesized function should return a DataFrame

92

☐: Post

(☐:Class<Post>)
 .first

(☐:Class<Post>)
 .where(☐:{FF.}).first

(☐:Class<Post>)
 .exists?(☐:{FF.})

Post.where(☐:{id: Int,
 slug: Str, FF.})
 .first

Post.where({
 id: (☐:Int)})
 .first

Post.where({
 slug: (☐:Str)})
 .first

Post.where({
 slug: arg0})
 .first

Post.where({
 slug: arg1})
 .first

Post.first

✓

✗✗

✗

✗

t0 = Post.where({
 slug: arg1}).first
(☐:Post).title =
 (☐:Str)
☐:Post

t0 = Post.where({
 slug: arg1}).first
t0.title = arg0
t0

t0 = Post.where({
 slug: arg1}).first
t0.title = (☐:{
 author: Str, title: Str, FF.})
 [☐:author or title or FF.]
t0

✗

✗
t0 = Post.where({
 slug: arg1}).first
t0.title =
 arg2[:author]
t0

t0 = Post.where({
 slug: arg1}).first
t0.title =
 arg2[:title]
t0

✗
Effect: Post.title

Type Error

Test Failure
No Terms

Test Failure

Test Failure

Test Failure

Test Failure

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C14

C15

t0 = Post.where({
 slug: arg1}).first
(◇:Post.title)
☐:Post C10

C9

Figure 4.3: Steps in the synthesis of solution to the problem in Figure 4.1. Some
choices available to the synthesis algorithm has been omitted for simplicity.

that has columns ’id’, ’valueA’, and ’valueB’. Additionally, Absynthe also uses

a set of constants that can be used during the synthesis process. It constructs this

from the rows and columns of the dataframes in the input/output example: {’id’,

’valueA’, ’valueB’, 0, 1, . . . , 13}.

Absynthe iteratively produces candidate function bodies that may contain holes

□ : a, where each hole is labeled with the abstract value a its solution must abstractly

evaluate to. Synthesis begins (left side of figure) with candidate C0, which is a hole

labeled with the abstract return value of the function. At each step, Absynthe

replaces a hole with an expression that satisfies its labels. For example, candidate C1 is

not actually generated because its concrete value ’valueA’ is not of type DataFrame.

The process continues until the program has been full concretized, at which point

is it tested in the Python interpreter against the input/output examples. Synthesis

terminates when it finds a candidate that matches the input/output examples. For

our running example, Figure 4.1e shows the solution synthesized by Absynthe.

The rest of the figure illustrates the search process. The candidate C2 does not

satify the abstract specification on columns, so it is also never generated. The candidate

93

C3 instead expands the hole to a call to query, which itself has holes for the receiver

and argument. Note we omit the abstraction labels here because Absynthe has not

fixed the abstract value for that hole yet. Absynthe treats these as abstract variables

that can be used during abstract interpretation, but will be eventually substituted

with a fixed abstract value as the search proceeds (discussed in § 4.3).

After a single set of expansion of holes, Absynthe runs the abstract interpreter

on all candidates (including the partial programs). Running C3 through the abstract

interpreter calls the pd_query function from PyTypeInterp (Figure 4.2d). From the

evaluation of the pd_query Absynthe can infer the first hole has to be a subtype of

DataFrame and the second hole should be a subtype of String. Thus candidates like

C4 will not be generated as it is ill-typed (arg0 is a DataFrame).

We use filling the remaining hole in C5 to illustrate another feature of Absynthe,

enumerating finite abstract domains. Absynthe has the upper bound of this hole

at DataFrame, it will substitute all possible values from PyType that are subtypes of

DataFrame. Since there is only one type i.e., DataFrame, it synthesizes expressions of

that type at the hole. For the next candidate C6, again by running abstract interpreter

bounds for □ are determined. The _ in the □ signifies that ColNames domain still is

an abstract variable, while the types have been concretized. Absynthe can determine

bounds for variables only if the abstract transformers have conditionals (discussed in

§ 4.3.1), not present in pd_merge of ColNameInterp. Running the abstract interpreter

eliminates candidate C7 as the partial program will not satisfy the synthesis goal.

Eliminating partial programs removes a family of concrete programs, narrowing the

search space further. Absynthe next generates candidates C8 and C9. C8, however,

is eliminated because the ColNames domain interpreter computes the final data frame

will have columns {’id’, ’valueA’}. Eventually, the keyword argument to the merge

method is filled with an array. Some ways of filling that argument fail the test cases

(C10), but C11 passes all tests and is accepted as the solution (after being wrapped in

94

a Python method defintion), also shown in Figure 4.1e.

4.3 Formalism

In this section we formalize Absynthe in a core language Lf . Figure 4.4a shows

the Lf syntax. Expressions in Lf have values v, drawn from a set of concrete values

V; variables x; holes □ : a tagged with an abstraction a; and function application

f(e, . . . , e). Note that these are external functions f , e.g., to call out to libraries.

Programs in Lf consist of a single function definition def m(x) = e of a function m

that takes an argument x and returns the result of evaluating e.

Abstractions a include abstract values ṽ drawn from an abstract domain A. We

assume this domain forms a complete lattice with greatest element ⊤, least element

⊥, and partial ordering a1 ⊆ a2. Abstractions also include abstract variables x̃, which

Absynthe uses to label holes whose abstractions cannot immediately be determined.

For example, if Absynthe synthesizes an application of a function f , it labels f ’s

arguments with abstract variables. During synthesis, Absynthe maintains bounds on

such variables to narrow down the search space (see below). We refer to abstract values

from § 4.2 as abstractions in this section to avoid the ambiguity between abstract

variables and values. Concrete values are lifted to abstract values using the abstraction

function α, mapping concrete values to abstract values, i.e., α maps V to A. Likewise,

abstract values map to a set of concrete values using the concretization function γ,

i.e., γ maps A to the ℘(V). We write v ∈ ṽ as a shorthand for checking that v is in

the concretization of ṽ. We assume that for each function f , we have a corresponding

abstract transfer function f# that soundly captures its semantics. Finally, during

synthesis, Absynthe maintains two variable environments: Γ, binding variables x

to their abstractions, and ∆, binding abstract variables x̃ to their bounds. Abstract

variable bounds are written as a tuple of the lower and upper bound respectively

95

Expressions e ::= v | x | □ : a | f(e, . . . , e)
Programs P ::= def m(x) = e
Concrete Values v ∈ V
Abstractions a ::= ṽ | x̃
Abstract Values ṽ ∈ A

Abstraction Function α : V→ A
Concretization Function γ : A→ ℘(V)
Inclusion v ∈ ṽ if v ∈ γ(ṽ)
Abstract Transfer Function f# : (A, . . . ,A)→ A

Abstract Environment Γ ::= ∅ | x : a, Γ
Bounds Environment ∆ ::= ∅ | x̃ : (a, a), ∆

(a) Syntax and relations of Lf .
Γ ⊢ e ⇓ a

η(v) = a

Γ ⊢ v ⇓ a
E-Val

Γ ⊢ x ⇓ Γ[x]
E-Var

Γ ⊢ □ : a ⇓ a
E-Hole

Γ ⊢ e1 ⇓ a1 . . . Γ ⊢ en ⇓ an

Γ ⊢ f(e1, . . . , en) ⇓ f#(a1, . . . , an)
E-Fun

(b) Abstract semantics for Lf .

Figure 4.4: Syntax, relations, and abstract semantics of Lf .

(details in § 4.3.1).

Abstract Semantics Next, we define semantics to abstractly interpret candidate

programs in our domain. Figure 4.4b presents the relation Γ ⊢ e ⇓ a that, given an

abstract environment Γ, evaluates an expression e to an abstract value a. E-Val lifts

a concrete value to the abstract domain by applying the abstraction function. E-Var

lifts a variable to an abstract value by substituting the value from the environment Γ.

E-Hole abstractly evaluates a hole to its label. Finally, E-Fun recursively evaluations

a function application’s arguments and then applies the abstract transfer function f#.

96

Synthesis Problem We can now formally specify the synthesis problem: Given an

abstract domain A, a set of abstract transformers f#, and an abstract specification

of the function’s input and output a1 → a2, synthesize a set of programs P such

that NoHole(P), i.e., P has no holes in it, and x : a1, ∅ ⊢ P ⇓ a2, i.e., P abstractly

evaluates to a2 given that x has abstract value a1. Then, the final solution is chosen

as a synthesized candidate P that passes all input/output examples.

4.3.1 Abstract Transformer Function DSL

Figure 4.5a shows Lmeta, the DSL to define abstract transformer functions f# for

Absynthe. The primary purpose of the DSL is to let users define f# that can handle

both abstract values aand variables x̃ correctly. It is expressive enough to write

the abstract transformer function for domains in § 4.2. Expressions ê in Lmeta can

be either such abstractions a, variables y, function application g(ê) and if-then-else

statements. We consider g as uninterpreted abstract functions. The conditionals b

for if statements include top? that tests if an expression is ⊤, bot? that tests if an

expression is ⊥, var? that tests if an expression is an abstract variable x̃, and val?

that tests if an expression is a abstract value a. Additionally, expressions ê can test

for ordering using ⊆ or can call an abstract function g(ê). The else branch of these

conditionals evaluate to ⊤, i.e., it evaluates to the largest possible abstraction ⊤ if a

test of ordering fails. This is done to soundly over-approximate program behavior,

while sacrificing precision. The abstract transformer is defined as a function f# that

takes the input abstract value as argument y and computes the output abstraction by

evaluating the expression ê.

Figure 4.5b shows selected big-step evaluation rules for the abstract transformer

functions written in Lmeta. Under an abstract environment Γ and a bounds environment

∆, expression ê evaluates to a new bounds environment and a value v. In general

these rules reflect standard big step semantics, except for the ⊆ operation, where the

97

Expressions ê ::= a | y | g(ê) | if b then ê else ê
| if ê ⊆ ê then ê else ⊤ | if g(ê) then ê else ⊤

Conditionals b ::= top? ê | bot? ê | var? ê | val? ê

Transfer Functions P̂ ::= def f#(y) = ê

(a) Syntax of Lmeta.

Γ ⊢ ⟨∆, ê⟩ ⇓ ⟨∆, a⟩

Γ[y] = a

Γ ⊢ ⟨∆, y⟩ ⇓ ⟨∆, a⟩
A-Var

Γ ⊢ ⟨∆1, ê⟩ ⇓ ⟨∆2, a⟩
Γ ⊢ ⟨∆1, g(ê)⟩ ⇓ ⟨∆2, g(a)⟩

A-Func

Γ ⊢ ⟨∆1, b⟩ ⇓ ⟨∆2, true⟩
Γ ⊢ ⟨∆2, ê1⟩ ⇓ ⟨∆3, v⟩

Γ ⊢ ⟨∆1, if b then ê1 else ê2⟩ ⇓ ⟨∆3, v⟩
A-IfT

Γ ⊢ ⟨∆, ê⟩ ⇓ ⟨∆,⊤⟩
Γ ⊢ ⟨∆, top?⟩ ⇓ ⟨∆, true⟩

A-TopT

Γ ⊢ ⟨∆1, ê1⟩ ⇓ ⟨∆2, x̃⟩
Γ ⊢ ⟨∆2, ê2⟩ ⇓ ⟨∆3, ṽ⟩

∆3[x̃] = (a2, a3) a2 ⊆ ṽ ⊆ a3
∆4 = ∆3[x̃ 7→ (a2, ṽ)]

Γ ⊢ ⟨∆1, ê1 ⊆ ê2⟩ ⇓ ⟨∆4, true⟩
A-VC

Γ ⊢ ⟨∆1, ê1⟩ ⇓ ⟨∆2, x̃1⟩
Γ ⊢ ⟨∆2, ê2⟩ ⇓ ⟨∆3, x̃2⟩

Γ ⊢ ⟨∆1, ê1 ⊆ ê2⟩ ⇓ ⟨T (∆3, x̃1, x̃2), true⟩
A-VS

T (∆, x̃1, x̃2) =

∆[x̃1 7→ (a3, a4)] if a1 ⊆ a3, a4 ⊆ a2

∆[x̃1 7→ (a3, a2), x̃2 7→ (a3, a2)] if a3 ⊆ a2 ⊆ a4

∆ if a1 ̸⊆ a4

where ∆[x̃1] = (a1, a2),∆[x̃2] = (a3, a4)

(b) Selected Lmeta evaluation rules.

Figure 4.5: Syntax and evaluation rules of Lmeta.

98

bounds get constrained because of the comparison. The rule A-IfT evaluates the

branch condition b and evaluates ê1 if it is true. A similar rule (omitted here) can

be written if the conditional evaluates to false. A-TopT checks if the expression

ê evaluates to ⊤. We omit evaluation rules for the false case and other branching

predicates such as bot?, var?, and val? which are similar to top?.

The rules for evaluating e ⊆ e are most interesting, as these test for the ⊆ relation

while constraining abstract variables x̃ to the range under which the relation e ⊆ e

holds. In general, the abstract variable narrowing reduces the range of x̃ to a sound

range for that evaluation through f#. In effect it is finding satisfiable range for x̃ for

that branch. A-VarConst tests for the ⊆ relation when ê1 evaluates to a variable x̃

and ê2 evaluates to a values ṽ. In such a case, if ṽ is within the range of the variable x̃

the term evaluates to true, while updating the upper bound of x̃ to ṽ. This narrows

the abstract variables, while still being sound under which the partial order relation

⊆ holds true. A similar symmetrical rule exists (omitted here) where the left hand

evaluates to ṽ and right hand evaluates to x̃. Finally, A-VarSub gives the rules for

comparing two abstract variables x̃1 and x̃2. It uses a metafunction T to describe the

cases where x̃1 is contained in x̃2, or has some overlap, or x̃1 is less than x̃2.

4.3.2 Abstraction-Guided Synthesis

To perform abstraction-guided synthesis, Absynthe recursively replaces holes by

suitable expressions and then tests fully concretized candidates. Figure 4.6 shows the

rules for hole replacement. These rules prove judgments of the form ∆,Γ ⊢ e1 ⇝ e2 : a,

meaning in bounds environment ∆ and abstract environment Γ, expression e1 takes

a step by replacing a hole in e1 to yield a new expression e2. In particular, S-Val

replaces □ : a with a value v from the concrete set that aabstracts. Similarly, S-Var

replaces a hole with a variable that is compatible with the hole’s label.

The next few rules are used to generate function applications, or more generally,

99

∆,Γ ⊢ e⇝ e : a

v ∈ γ(a′) a′ ⊆ a

∆,Γ ⊢ □ : a⇝ v : α(v)
S-Val

Γ[x] = a′ a′ ⊆ a

∆,Γ ⊢ □ : a⇝ x : a′
S-Var

f#(x̃1, . . . , x̃n) = a′ ∆[x̃i] = (ai,1, ai,2)
ai,1 ⊆ ai ai ⊆ ai,2 a′ ⊆ a

∆,Γ ⊢ □ : a⇝ f(□ : a1, . . . ,□ : an) : a
′ S-Finite

∆,Γ ⊢ □ : x̃1 ⇝ e1 : x̃1 . . . ∆,Γ ⊢ □ : x̃n−1 ⇝ en−1 : x̃n−1

Γ ⊢ e1 ⇓ a1 . . . Γ ⊢ en−1 ⇓ an−1

f#(a1, . . . , an) = a′ a′ ⊆ a

∆,Γ ⊢ □ : a⇝ f(e1 : a1, . . . ,□n : an) : a
′ S-Solve

x̃i and x̃′ is fresh
∆,Γ ⊢ □ : a⇝ f(□ : x̃1, . . . ,□ : x̃n) : x̃

′ S-Enumer

Figure 4.6: Hole replacement rules for Lf .

any term that may have more holes. First, S-Finite generates function application

when the domain from which ais drawn is finite, e.g., a simple type system that

without polymorphic types or first class lambdas, or an effect system as used in Guria,

Foster, and Van Horn [49]. This rule can produce multiple candidates with each hole

tagged with distinct abstract values from the domain. Second, for abstract domains

with infinite values that can be represented in a background theory solver, Absynthe

applies the S-Solve. If the function application requires n arguments, only n − 1

arguments are concretized to a term. This gives the constraint f#(a1, . . . , an) = a′

with only one unknown, an, that can solved for and assigned to the hole. For f#

to be lifted to a SMT solver f# should also have an interpretation a background

theory supported by the solver. This is useful for representing predicate abstractions

or numeric domains such as intervals or string lengths (used in SyGuS evaluation in

§ 4.5.1). Finally, S-Enumer replaces a hole with a function application with fresh

abstract variables x̃i for the arguments and return. Notice there is no guarantee f

will produce a value of the appropriate abstraction. This is because, while we assume

100

we have an abstract transfer function f#, we do not know what abstraction it will

compute without concretizing the arguments. However, unsound partial programs

will be eliminated by the abstract interpreter as discussed below. Given only forward

evaluation semantics and no other information about the domains, this is best way

to construct partial program candidates. Absynthe can switch between bottom-up

synthesis (S-Enumer) and top-down goal-directed synthesis (rest of the S- rules)

depending on which rule is applied. While these rules are non-deterministic, the

Absynthe implementation (§ 4.4) chooses and applies these rules for the correct

domain in a fixed order to yield solutions.

Algorithm 3 Synthesis of programs that passes a spec s

1: procedure Generate(a1 → a2, maxSize)
2: Γ ← [x 7→ a1]
3: e0 ← □ : a2
4: workList ← [e0]
5: while workList is not empty do
6: ecurr ← pop(workList)
7: ωenumer ← {et | Γ ⊢ ecurr ⇝ et : a}
8: ωvalid ← {et ∈ ωenumer | Γ ⊢ et ⇓ a ∧ a ⊆ a2}
9: ωeval ← {et ∈ ωvalid | NoHole(et)}

10: ωrem ← ωvalid − ωeval

11: for all et ∈ ωeval do
12: return et if TestProgram(et)
13: end for
14: ωrem ← {et ∈ ωrem | size(et) ≤ maxSize}
15: workList ← reorder(workList + ωr)
16: end while
17: return Error: No solution found
18: end procedure

Synthesis Algorithm Algorithm 3 performs abstraction-guided synthesis. The

algorithm uses a work list and combines synthesis rules for candidate generation with

search space pruning based on abstract interpretation, in addition to testing in a

concrete interpreter. The ordering of programs in the worklist determines the order in

which program candidates are explored (discussed in § 4.4). The synthesis algorithm

101

starts off with an empty candidate e0 as a base expression in the work list. At every

iteration it pops one item from the work list and applies synthesis rules (Figure 4.6)

in a non-deterministic order to produce multiple candidates ωenumer. Each candidate

is abstractly interpreted, and then checked to see if the computed abstraction satisfies

the goal abstraction. If it is satisfied it is added to the set of valid candidates ωvalid

(line 8). As partial programs with holes represent a class of programs, abstractly

interpreting these eliminate a class of programs if they are not included in the goal a2.

Thus, the algorithm iterates through partial programs which are sound with respect

to the abstract specification. Any unsound programs generated by S-Enumer are

pruned here.

Finally, all concrete programs ωeval are tested in the interpreter to check if a

program satisfies all test cases, in which case it is returned as the solution. The

remaining programs ωrem contain holes, so these can be expanded further by the

application of synthesis rules. Only programs below the maximum size of the search

space are put back into the work list, and the order of the work list is always based

on some domain-specific heuristics (§ 4.4 discusses our program ordering).

4.4 Implementation

Absynthe is implemented in approximately 3000 lines of Ruby excluding dependencies.

It is architected as a core library whose interfaces are used to build a synthesis tool for

a problem domain. Additionally, to support solver-backed domains, we developed a

library (~460 lines) to lazily convert symbolic expressions to Z3 constraints and solve

those in an external process. Absynthe uses a term enumerator that, at each step,

visits holes in a term and substitutes it with values or subterms containing more holes

applying the rules shown in § 4.3.2. Absynthe requires users to define a translation

from the ASTs to the source program and a method that tests a candidate to return

102

if the test passed or not. Users may provide a set of constants for the language which

are used as values to be used in the concretization function. In practice, this is useful

when the language has infinite set of terminals (like Python), and selecting values

from the set of constants makes the term generation tractable. For AutoPandas

benchmarks, we infer such constants from the data frame row and column labels

(§ 4.2).

Absynthe explores program candidates in order of their size, preferring smaller

programs first (line 15 of Algorithm 3). We plan to explore other program exploration

order in future work. The synthesis rules presented in § 4.3.2 are non-deterministic,

however, our implementation fixes an order of application such rules. It prefers to

synthesize constants and variables followed by function applications, hashes, arrays,

etc. Moreover, based on the definition of abstract domains (discussed below), it can

automatically choose to apply the S-Finite or S-Solver rules. If none of these

specialized rules apply, it uses S-Enumer rule to synthesize subterms.

Abstract Domains To guide the search, users need to implement an abstract

domain. Absynthe provides a base class—AbstractDomain from which a program-

mer can inherit their own abstract domains implementation, like Figure 4.2. The

base classes come with machinery that gives built-in implementation of ⊤, ⊥, ab-

stract variables x̃, and supporting code for partial ordering between these abstract

values. The user has to define how to construct abstract values for that domain (the

initialize method in § 4.2), the partial ordering relation ⊆ between two abstract

values. The abstract variable narrowing (§ 4.3.1) is implemented as the ⊆ method in

the AbstractDomain base class. Solver-aided domains (such as string length in § 4.5.1)

construct solver terms when initializing an abstract value, or apply functions that

compute abstract values (including ∪ and ∩). These terms are checked for satisfiability

of a1 ⊆ a2 in the solver when the ⊆ method is invoked, and any solved abstract

103

variables are assigned to its holes. If the solver proves the solver term unsatisfiable,

the candidate is eliminated. The rule S-Finite is applied for domains with finite

abstract values and S-Solve is used for domains whose values can be inferred using an

SMT solver yielding top-down goal-directed synthesis. In case these cannot be applied,

Absynthe falls back to using the S-Enumer rule that is equivalent to bottom-up

term enumeration. We plan to explore a more ergonomic API for the Absynthe

framework in future work.

Absynthe also provides a ProductDomain class to automatically derive product

domains by combining any user-defined domains as needed. The ⊆ method on

ProductDomain returns the conjunction of respective ⊆ on the individual domains it

is composed of.

Abstract Interpreters Each abstract domain needs a definition of abstract seman-

tics, inherited from the AbstractInterp class provided by Absynthe (as shown in

§ 4.2). All subclasses override the interpret method that takes as argument the

abstract environment and the AST of the term that is being evaluated. In practice, it

is implemented as evaluating subterms recursively, and then applying the abstract

transformer function written in a subset of Ruby (similar to Lmeta in § 4.3.1) to

evaluate the program in the abstract domain. A sound interpreter for ProductDomain

is derived automatically, by composing the interpreters of its base domains. More

specifically, it evaluates the term under individual base domains and then combines

the results pointwise into a product.

Concrete Tests Any synthesized term without holes that satisfies the abstract

specification is tested by Absynthe in a reference interpreter against concrete test

cases. Absynthe expects the programmer to define a test_prog method that calls

the reference interpreter with the synthesized source program (as a string in the

source language), and returns a boolean to indicate if the tests passed. The reference

104

interpreter runs the test case, which in many cases boils down to checking the program

against the provided input/output examples. If the program passes all test cases, it is

considered the correct solution. If the program fails a test, it is discarded.

Optimizations In practice, Absynthe uses a min-heap to store a work list of

candidates ordered by their size. This eliminates the reorder step (Algorithm 3 line 15),

saving an average cost of O(n log n) at each synthesis loop iteration. Additionally, we

found certain common subterms occur frequently in the same program, e.g., computing

the index of the first space in a string in a SyGuS program. Absynthe caches small

terms (containing up to one function application) that do not have any holes to save

the cost of synthesizing these small fragments. Whenever, a hole with compatible

abstract value is found, these fragments are substituted directly without doing the

repetitive work of synthesizing the function application from scratch again (similar to

subterm reuse in DryadSynth [52]). Finally, Absynthe tests a set of predicates

against given input/output examples, to guess a partial program instead of starting

from just a □ term. For example, Absynthe has a predicate that checks if the output

is contained in the input, then the output is a substring of the input. For the SyGuS

language, if the predicate (str.contains output input) tests true, then the partial

program is inferred to be (str.substr input □ □). This reduces the problem

complexity by cutting down the search space. Another predicate (str.suffixof

output input) tests if the input ends with output, then it infers the partial program

(str.substr input □ (str.len input)), i.e., the program is possibly a substring

of the input from some index to the end. We evaluate the performance impact of the

latter two optimizations in § 4.5 (No Template column in Table 4.1).

Limitations While Absynthe is a versatile tool to define custom abstract domains

and combine it with testing in a reference interpreter, the approach does have some

limitations. First, Absynthe only works with forward evaluation rules over the

105

abstract domain, in contrast to FlashMeta [83] that requires “inverse semantics”,

i.e., rules that given a target abstraction computes the arguments to the abstract

transformer. While specifying only the forward semantics eases the specification burden

for users, it require more compute time to synthesize subterms such as arguments

to functions. Second, while we found product domain useful to combine separate

domains, these domains remain independent through synthesis, unlike predicates where

all defined semantics can be considered at the same time. We plan to explore methods

to make product domains more expressive in future work. Third, problems where one

can define full formal semantics are a better fit for solver-aided synthesis tools such as

Rosette [102] or SemGuS [58]. We share performance benchmarks on SyGuS strings

(which have good solver-aided tools) to give some evidence for this in our evaluation

(§ 4.5.1). Notably, solver-aided tools can jointly reason about subterms. In contrast,

when using solver-aided domains, Absynthe concretizes some of the subterms which

requires enumeration through larger number of terms. Finally, Absynthe falls back

on term enumeration when abstract domains do not provide any more guidance, often

leading to combinatorial explosion for larger terms.

4.5 Evaluation

We evaluate Absynthe by targeting it in variety of domains, to verify it can synthesize

different workloads. The primary motivation is to evaluate the general applicability

of abstract interpretation-guided synthesis to diverse problems rather than being a

state-of-the-art tool at a single synthesis benchmark suite. The questions we aim to

answer in our evaluation are:

• How well does Absynthe work for problems traditionally targeted using solver-

based strategies using the SyGuS strings benchmark [5] (§ 4.5.1)? We also discuss

the performance impact of optimizations and program exploration behavior in

106

Absynthe.

• Can Absynthe be adapted to an unrelated problem (not handled by any

tools that solve SyGuS benchmarks) where it is difficult to write precise formal

semantics? We test this by using Absynthe to synthesize Python programs that

use the Pandas library from the AutoPandas [13] benchmark suite (§ 4.5.2).

4.5.1 SyGuS Strings

Benchmarks To test that Absynthe is a viable approach to synthesize programs

that has been well explored in prior work, we target it on the SyGuS strings benchmark

suite [5]. We believe strings form a good baseline to compare Absynthe with other

synthesis approaches that rely on enumerative search [3], SMT solvers [89], and

abstract methods directed by solvers [110] (discussed in details in § 4.6). In contrast,

Absynthe uses only abstract domains with their forward transformers to guide the

search. We do not expect Absynthe to out-perform the past tools, rather to evaluate

if it can solve most of the benchmarks at a lower cost of defining lightweight abstract

domains and partial semantics upfront.

SyGuS strings has 22 benchmarks with 4 variants of each—standard (baseline set of

input/output examples), small (fewer examples than standard), long (more examples

than standard), long-repeat (more examples than long with repeated examples). As

our approach is dependent only on the abstract specification and testing, not on

the number of examples, we show detailed results for the standard version of these

benchmarks. These results generalize to all variants of each benchmark. As we aim to

evaluate how abstraction guided search performs, we exclude any programs containing

branches. Previous work like RbSyn [49] and EuSolver [3] have used test cases that

cover different paths through a program to do more efficient synthesis of branching

programs. These can be adapted to a system like Absynthe with minor effort.

Absynthe parses the SyGuS specification files directly to prepare the synthesis

107

goal and load the target language. As SyGuS does not come with an official concrete

interpreter for programs, we provide one written in Ruby that is compliant with the

SyGuS specifications [86]. Absynthe uses this interpreter as a black-box and does

not receive any additional feedback other than the generated SyGuS programs satisfied

the input-output examples or not.

Abstract Domains We defined the following abstract domains and their semantics

to run the benchmark suite:

1. String Length. A solver-aided domain to lift strings to their lengths, while

lifting integers and booleans without transformation. This means the concretiza-

tion of the abstract value 5 can be the number 5 and the set of all strings of

length 5, whereas the boolean abstract value true or false represents identical

concrete values.

2. String Prefix. A domain to represent the set of strings that begin with a

common prefix. For example, an abstract value with string “fo” is wider than an

abstract value with string “foo”, as the former denotes all strings starting with

“fo” and the latter includes a subset of that, i.e., strings starting with “foo”. The

⊆ operation checks if the prefix of one string starts with the prefix of the other.

3. String Suffix. A domain to represent the set of strings that end with a common

suffix, similar to string prefix domain. The ⊆ operation checks if the suffix of

one string ends with the suffix of the other.

These domains were created by looking at the input/output examples in the

synthesis specs, and encoding the simplest partial semantics that guides the reasoning.

For example, a few problems have programs that start with or end with a string

constant. This is how we designed the string prefix and suffix domains respectively.

On the other hand, many problems produce strings of fixed lengths or the length of the

108

output string is a function of the length of the input string. The string string length

domain expresses semantics constraints of this kind. As the string length domain is

solver-aided, it can handle symbolic constraints from abstract variables like the string

length of a substring str.substr operation is j - i where i and j are the start and

end index respectively. Although the string length domain does not preserve type

information, SyGuS being a typed language (type-soundness enforced by the grammar)

all programs in the language are type-correct by construction. Consequently, we did

not need to write a type system as an abstract domain.

Finally, we give abstract specifications in the selected abstract domains where

required. Specifically, we run each benchmark without an abstract annotation, i.e.,

equivalent to ⊤ → ⊤ specification which results in naive enumeration combined with

abstract interpretation. If a benchmark times out, then we add an abstract annotation,

such as ⊤ → “Dr. ” for the dr-name example (Table 4.1). This specification means,

Absynthe should find a function that given any input string (⊤), it computes strings

starting with “Dr. ” only.

Results

109

Ta
bl

e
4.

1:
R

es
ul

ts
of

ru
nn

in
g

A
bs

y
n
th

e
on

Sy
G

uS
st

ri
ng

s
be

nc
hm

ar
ks

.
#

E
x

lis
ts

th
e

nu
m

be
r

of
I/

O
ex

am
pl

es
;T

im
e

lis
ts

th
e

m
ed

ia
n

an
d

se
m

i-i
nt

er
qu

ar
ti

le
ra

ng
e

fo
r

11
ru

ns
;S

iz
e

an
d

H
t

re
po

rt
s

th
e

nu
m

be
r

of
A

ST
no

de
s

an
d

th
e

he
ig

ht
of

th
e

pr
og

ra
m

A
ST

re
sp

ec
ti

ve
ly

;#
Te

st
ed

is
th

e
nu

m
be

r
of

pr
og

ra
m

s
ru

n
in

th
e

co
nc

re
te

in
te

rp
re

te
r

be
fo

re
a

so
lu

ti
on

w
as

fo
un

d;
D

om
ai

ns
lis

ts
th

e
do

m
ai

ns
us

ed
to

sp
ec

ify
th

e
ab

st
ra

ct
sp

ec
;
an

d
#

E
lim

lis
ts

th
e

nu
m

be
r

of
pa

rt
ia

lp
ro

gr
am

s
el

im
in

at
ed

by
th

e
ab

st
ra

ct
in

te
rp

re
te

r
du

ri
ng

se
ar

ch
.

N
o

ca
ch

e
an

d
N

o
T
em

p
m

ea
su

re
th

e
pe

rf
or

m
an

ce
of

A
b
sy

n
t
h
e

w
he

n
sm

al
le

xp
re

ss
io

n
ca

ch
e

an
d

te
m

pl
at

e
in

fe
re

nc
e

(§
4.

4)
ar

e
di

sa
bl

ed
re

sp
ec

ti
ve

ly
.

B
en

ch
m

ar
k

#
E

x
T

im
e

(s
ec

)
Si

ze
H

t
#

T
es

te
d

D
om

ai
ns

#
E

lim
N

o
C

ac
he

N
o

T
em

p

bi
ke

s
6

1.
70

±
0.

02
7

4
48

08
⊤

0
2.

55
35

.0
5

dr
-n

am
e

4
1.

54
±

0.
02

11
4

47
97

P
re

fix
46

61
0

13
9.

53
2.

92
fir

st
na

m
e

4
0.

03
±

0.
00

7
3

4
⊤

0
0.

63
0.

18
in

it
ia

ls
-

-
-

-
-

-
-

-
-

la
st

na
m

e
4

0.
02

±
0.

00
10

4
15

⊤
0

0.
81

18
.7

2
na

m
e-

co
m

bi
ne

6
0.

21
±

0.
00

5
3

56
6

⊤
0

0.
24

0.
22

na
m

e-
co

m
bi

ne
-2

4
6.

01
±

0.
06

9
4

97
23

Su
ffi

x
48

51
6

6.
65

8.
28

na
m

e-
co

m
bi

ne
-3

6
47

.8
6

±
0.

23
9

5
11

73
70

Su
ffi

x
12

45
73

68
.2

9
43

.6
3

na
m

e-
co

m
bi

ne
-4

-
-

-
-

-
-

-
-

-
ph

on
e

6
0.

03
±

0.
00

4
2

3
⊤

0
0.

03
0.

12
ph

on
e-

1
6

0.
16

±
0.

00
6

3
11

89
⊤

0
0.

20
7.

32
ph

on
e-

2
6

0.
05

±
0.

01
7

3
41

⊤
0

0.
04

63
.8

2
ph

on
e-

3
-

-
-

-
-

-
-

-
-

ph
on

e-
4

6
0.

05
±

0.
01

4
2

15
77

⊤
0

0.
05

0.
14

ph
on

e-
5

7
0.

03
±

0.
00

7
3

18
⊤

0
2.

16
0.

20
ph

on
e-

6
7

10
0.

54
±

0.
51

14
4

59
37

Le
ng

th
12

23
4

-
27

.7
9

ph
on

e-
7

7
10

3.
92

±
0.

37
14

4
54

05
1

Le
ng

th
12

63
9

-
-

ph
on

e-
8

7
0.

72
±

0.
00

10
4

21
7

Le
ng

th
31

1.
37

-
ph

on
e-

9
-

-
-

-
-

-
-

-
-

ph
on

e-
10

-
-

-
-

-
-

-
-

-
re

ve
rs

e-
na

m
e

6
0.

35
±

0.
00

5
3

59
3

⊤
0

0.
41

0.
42

un
iv

-1
6

6.
69

±
0.

07
7

3
19

68
3

⊤
0

8.
08

7.
73

110

Table 4.1 shows the results of running the SyGuS strings benchmarks through

Absynthe with the discussed domains. The numbers are reported as a median of 11

runs on a 2016 Macbook Pro with a 2.7GHz Intel Core i7 processor and 16 GB RAM.

All experiments had a timeout of 600 seconds. In Table 4.1, Benchmark column is the

name of the problem, # Ex shows the number of input/output examples. Time shows

the median running time of the benchmark along with the semi-interquartile range

over 11 runs. The Size and Ht columns give the size of the synthesized program as

the count of the AST nodes in the SyGuS language and the height of the synthesized

program AST respectively. The # Tested column lists the number of programs that

were tested in the concrete interpreter before a solution was found. An abstraction that

works well reduces this number compared to a worse abstraction or naïve enumeration.

Domains column lists the domains used for synthesizing the program. These domains

were provided as a specification in the abstract domain. ⊤ denotes that an abstract

specification was provided as a product of ⊤ values in all individual domains for

input and output, resulting in just term enumeration. The rows which mention the

domain was provided abstract specs only from that domain, resulting in guidance

from the provided specification. The # Elim lists the number of partial programs

(denotes a family of concrete programs) that were eliminated by running the abstract

interpreter with the provided specification during the search. For the problems which

used the ⊤ domain, the abstract interpreter did not eliminate any partial programs, as

specification admits all programs. Any row with – denotes time out of the benchmark

under these abstract specifications.

Most benchmarks are solved within ∼7 seconds, with exceptions being name-

combine-3, phone-6, and phone-7 which take longer. In general a larger program

takes much longer to synthesize, due to combinatorial increase in the number of terms

being searched through as the AST size increases. For example, larger programs

with same AST height take longer to synthesize due to higher number of function

111

arguments. The number of examples do not impact the time for synthesis as most

time is spent in abstract interpretation and term generation. Testing a candidate

on the examples take minimal time. Absynthe performs reasonably well, solving

around the same number of benchmarks as EuSolver [5]. We selected EuSolver

as it is based on an enumerative search method like Absynthe. The timeout of 600

seconds only applies to our Absynthe evaluation, whereas EuSolver was evaluated

with a timeout of 3600 seconds. Absynthe solves around 77% of the benchmarks

despite being a tool written a Ruby, one of the more slower languages. We suspect

additional performance gains can be had by writing the tool in performant language

that compiles to native code. We plan to explore this in future work. Additionally,

Absynthe does not have the problem of overfitting because the search algorithm

does not use the input/output examples. It merely uses it as a test case, and since

they do not influence term enumeration they do not cause overfitting with respect to

the examples.

Domain-specific synthesis costs Another key advantage of the Absynthe ap-

proach is only pay for what you use. The time of synthesis is dependent on the

semantics of the abstract domain. String prefix and suffix are implemented in pure

Ruby and does not incur much cost for invoking the solver, so these still guide the

search without much cost. However, the string length domain being a solver-backed

domain, requires a call to Z3 for every ⊆ check. So it give more precise pruning, while

taking a longer time for synthesis. Comparing the average time to generate all the

concrete programs explored gives evidence for this. For example, consider phone-6

which explores 5937 candidates in 100.54 seconds (16.93ms average) with the string

length domain, whereas name-combine-3 explores 117370 candidates in 47.86 seconds

(0.41ms average) with the string suffix domain. Depending on how expensive a domain

is, one can combine the domains to fit in a variety of synthesis time budgets.

112

Impact of performance optimizations We explore the impact of performance

optimizations discussed in § 4.4. First, the performance of Absynthe on these

benchmarks when the small expressions cache is disabled is reported in the No cache

column. It is slower than the baseline across all benchmarks. Notably, phone-6 and

phone-7 reuse function application subterms. So without caching small expressions,

these two benchmarks do repetitive work synthesizing the same expressions in different

call sites, resulting in a timeout. Second, the No Temp column reports the performance

numbers of Absynthe when it is run on these benchmarks with the template inference

by testing predicates is disabled. It is slower on most benchmarks than the baseline,

and even causing timeouts on some (phone-7 and phone-8). The exceptions are phone-

6 and name-combine-3, where the no templates version is faster than the baseline.

Recall, that the inferred templates have holes, that have are tagged with a fresh

abstract variable x̃ resulting in enumeration of more terms. In contrast, the candidate

generation rules (S-) applied during the program search that may potentially synthesize

holes with more precise abstractions resulting in less terms being enumerated. We

plan to explore mechanisms to infer template holes with more precise abstractions in

future work.

4.5.2 AutoPandas

Benchmarks We want to test if the approach used by Absynthe, of guiding

the search with lightweight abstract semantics combined with testing to ensure

correctness, is general enough to be useful for another domain. For this purpose

we use the AutoPandas [13] benchmark suite from its artifact 1 as a case study. The

benchmarks are sourced from StackOverflow questions containing the dataframe tag.

Each benchmark contain the input data frames, additional arguments, the expected

data frame output, the list of Pandas API methods to be used in the program, and
1GitHub: https://github.com/rbavishi/autopandas

113

https://github.com/rbavishi/autopandas

the number of method calls in the final program.

Bavishi et al. [13] define smart operators to generate candidates and train neural

models from a graph-based encoding on synthetic data to rank generated candidates.

For a baseline, they consider an enumerative search synthesis engine that naïvely

enumerates all possible programs using the methods specified in the benchmark. This

narrows down the search space to a permutation of 1, 2, or 3 method calls specified

upfront, instead of search over all supported Pandas API. In contrast, Absynthe

works like enumerative search, but large classes of programs are eliminated by abstract

interpretation of partial programs, or terms are constructed guided by the abstract

semantics. Unlike SyGuS, all benchmarks in AutoPandas have only one input and

output example. The synthesis goal is a multi-argument Python method that given

the specified input produces the desired output.

The evaluation of AutoPandas benchmarks uses the same Absynthe core as the

SyGuS evaluation. We wrote a test harness in Python that loads the AutoPandas

benchmarks written in Python and communicates with Absynthe core running as a

child process. The Absynthe core is responsible for doing the enumerative search,

while eliminating programs using abstract interpretation. Any concrete program

generated by Absynthe is tested in the host Python interpreter. These operations

are performed as inter-process communication over Unix pipes between the host

Python harness process and the child Absynthe Ruby process. This allows the

testing of generated programs in the host Python process, saving the overhead of

launching a new Python process and importing Pandas packages (about 1-3 seconds)

for every candidate. If the input/output examples are satisfied the synthesis problem

is solved, else control is returned back to Absynthe which searches and sends the

next candidate for testing.

Abstract Domains The abstract domains used for AutoPandas benchmarks are:

114

1. Types. A domain to represent the data type of the computed values (Fig-

ure 4.2c).

2. Columns. A domain to represent dataframes as a set of their column labels

(Figure 4.2a).

Our Python harness infers the data types and the column labels from the input/out-

put examples and the Absynthe core constructs the abstract domain values from

PyType and ColNames domains respectively. These individual domains are combined

pointwise using the product domain PyType × ColNames, and Absynthe soundly

applies the individual abstract semantics to compute values in the same product

domain. The types domain in Absynthe is a wrapper around types from RDL [36],

a type system for Ruby. Absynthe uses RDL as a library to build the PyType class

(the ty field holds an RDL type as shown in Figure 4.2c). This allows us to reuse

prior work that defines nominal types, generic types, finite hash types, singleton types,

and their subtyping relations. We define the semantics for these RDL types for the

Python language in an abstract interpreter PyTypeInterp to handle features such

as standard method arguments, optional keyword arguments, and singleton types as

arguments (like int). We define the concretization function µ over these types, for

example, nominal types can be concretized by all constants of the correct type from

the set of constants or the singleton types are concretized to the singleton value itself.

The semantics of the type domains are defined in terms of the PyType wrapper that

calls into the relevant RDL methods. The example implementation of these domains

in § 4.2 is a simplified version of these domains.

In practice, the AutoPandas benchmarks have input/output examples that are

not just data frames, but also integers, Python lambdas, and method references (such

as nunique from the Pandas library). Absynthe is soundly able to abstract these

into the relevant domains. For types, integers become Integer and lambdas are

inferred as a type Lambda. When these values are lifted to the columns domain, they

115

are represented as ⊥ as these are not data frames, thus there is no way to soundly

represent their column labels. Additionally, Absynthe infers a set of constants from

the input/output examples as well. It adds any string or numeric row and column

labels of the data frames, in addition to any string or numeric standalone values passed

as arguments. This set is used to synthesize the constants during the application of

the S-Val rules.

Results Table 4.2 shows the results of running the AutoPandas benchmarks

through Absynthe. The numbers are collected on a 2016 Macbook Pro with a

2.7GHz Intel Core i7 processor and 16 GB RAM, with a timeout of 20 minutes

(consistent with the timeout of Bavishi et al. [13]). The Name column shows the

name of the benchmark, i.e., the StackOverflow question ID from which the problem

is taken. The Depth column shows the length of sequence of method call chain in the

final solution. The AutoPandas benchmarks are tuned to synthesize programs with

a chain of method calls, where the bulk of the time spend is in synthesizing arguments

to these method calls. This is characteristic of the Pandas API which accepts many

arguments, often optional keyword arguments. The Time column shows the median

of 11 runs along with the semi-interquartile range, where – denotes that a benchmark

timed out. The Size lists the synthesized program size as number of AST nodes.

Note that, this number is affected by both the depth of the synthesized program (the

number of method calls) and the number of arguments to those methods. # Tested

lists the number of concrete programs generated by Absynthe that were tested in

the Python interpreter. Finally, AP Neural and AP Baseline shares the benchmarks

solved by the AutoPandas neural model and naïve enumeration to aid in comparison

with Absynthe. Two benchmarks, SO_12860421 and SO_49567723, are marked

with a * as these were found in the AutoPandas artifact were not reported in the

paper.

116

Table 4.2: Results of running AutoPandas benchmarks through Absynthe. The
Depth column shares the longest chain of method calls in the synthesized solution; Time
lists the median and semi-interquartile range of 11 runs for time taken to synthesize a
program; Size lists the number of AST nodes in the synthesized solution; # Tested
reports the number of concrete Python programs tested; AP Neural and AP Baseline
shares the benchmarks that AutoPandas neural model and naïve enumeration could
synthesize. The benchmarks denoted with a * were a part of the artifact, but not
reported in the paper [13]. Benchmarks highlighted in blue and yellow shows the
benchmarks only synthesized by Absynthe and AutoPandas respectively.

Name Depth Time (sec) Size # Tested AP Neural AP Baseline

SO_11881165 1 0.20 ± 0.00 6 40 ✓ ✓
SO_11941492 1 13.84 ± 0.04 5 2507 ✓ ✓
SO_13647222 1 - ✓ ✓
SO_18172851 1 0.42 ± 0.00 3 70
SO_49583055 1 3.77 ± 0.01 6 272
SO_49592930 1 0.22 ± 0.00 3 21 ✓ ✓
SO_49572546 1 1.50 ± 0.01 3 548 ✓ ✓
SO_12860421* 1 686.50 ± 1.68 11 1537521
SO_13261175 1 283.12 ± 0.39 11 237755 ✓
SO_13793321 1 5.70 ± 0.04 6 413 ✓ ✓
SO_14085517 1 216.14 ± 0.38 7 12844 ✓ ✓
SO_11418192 2 0.10 ± 0.00 5 11 ✓ ✓
SO_49567723 2 - ✓
SO_49987108* 2 -
SO_13261691 2 65.17 ± 0.17 3 22322 ✓ ✓
SO_13659881 2 0.21 ± 0.00 6 45 ✓ ✓
SO_13807758 2 54.92 ± 0.26 6 3144 ✓ ✓
SO_34365578 2 -
SO_10982266 3 -
SO_11811392 3 6.88 ± 0.03 4 921
SO_49581206 3 -
SO_12065885 3 0.24 ± 0.00 6 286 ✓ ✓
SO_13576164 3 - ✓
SO_14023037 3 -
SO_53762029 3 545.62 ± 0.91 9 229233 ✓ ✓
SO_21982987 3 - ✓ ✓
SO_39656670 3 -
SO_23321300 3 -

117

Absynthe solves 17 programs, the same number of programs as AutoPandas

neural model. However, the set of synthesized programs by both tools are different

with a significant overlap. Benchmarks listed in Table 4.2 without any highlight shows

the benchmarks that were synthesized by both tools. Benchmarks highlighted in blue

were synthesized only by Absynthe but not by AutoPandas. Likewise, benchmarks

highlighted in yellow are the benchmarks synthesized only by AutoPandas but not

by Absynthe. The time taken to synthesize the programs is largely dictated by

how the abstract semantics prunes the space of programs, hence it is proportional to

the number of concrete programs generated and tested. The fact that, for the same

program size, the number of AST nodes in the method arguments (the difference

between size and depth) is indicative of solving time shows that synthesizing arguments

is indeed the bottleneck of this benchmark suite. For example, like SO_11811392

and SO_12065885 the type system quickly narrows down the search space, and the

solution uses API methods that have 0 or 1 arguments only, making the arguments

synthesis quick.

Discussion Absynthe solves a harder synthesis problem because it does not use the

list of methods to be used as provided in the specification. Instead, Absynthe uses

the complete set of 30 supported Pandas API for every benchmark. Approximately,

this gives us a choice of permutations of size 1, 2, or 3 (depending on the depth of the

final solution) from 30 methods, without considering arguments from those methods.

In contrast, the baseline enumerative search AP Baseline comparison limits the search

to only the Pandas API methods that will be used in the final solution. Typically this

limits the search space to 1, 2, or 3 methods as given in the specification. In other

words, under naïve enumeration, Absynthe explores a strictly larger set of programs

than AutoPandas baseline.

In the benchmarks where Absynthe failed to synthesize a solution, it falls back

118

to term enumeration as the abstract domain was not precise. More specifically in

the benchmarks with depth 3, Absynthe could do better by jointly reasoning about

values in relational abstractions between multiple arguments of the same method. We

plan to explore support for relational abstractions in future work. The neural model

trained by Bavishi et al. [13] is good at guessing the sequences that are potentially

likely to solve the synthesis task. It, however, does not take into account semantics

of the program, thus eliminating impossible programs from being considered. This

shows up in SO_18172851 and SO_49583055 where both enumerative search and

neural models failed, but Absynthe succeeds. Moreover, any updates to the neural

model would need to be addressed with a new encoding or a retraining of the model on

new data, a potentially resource consuming process. However, exploring the synergy

of guidance from abstract interpretation combined with neural models similar to

Anderson et al. [6] to rank sound program candidate choices is an interesting future

work.

4.6 Related Work

General Purpose Synthesis Tools SemGuS [58] has the same motivation as

Absynthe to develop a general-purpose abstraction guided synthesis framework.

However, SemGuS requires the programmer to provide semantics in a relational

format as constrained horn clauses (CHCs). While CHCs are expressive and have

dedicated solvers [60], correctly defining semantics as a relations is prohibitively

time-consuming and error-prone. Moreover, SemGuS performs well in proving unreal-

izability of synthesis problems, but it has limited success in synthesizing solutions. In

contrast, Absynthe is a dedicated synthesizer that is geared towards synthesizing

programs based on executable abstract semantics. Absynthe can be thought of

as an unrealizability prover if coarse-grained semantics, the focus of Absynthe, is

119

sufficient to prove unrealizable. SemGuS also supports under-approximate semantics,

which is an interesting future work in the context of Absynthe. Rosette [102] and

Sketch [97] are solver-aided languages that use bounded verification using a SMT

solver to synthesize programs written in a DSL. In contrast, Absynthe relies on

abstract interpretation to guide search, so it can reason about unbounded program

properties. There has been parallel work in synthesis using Christiansen grammars [75]

that allows one to encode some program semantics as context-dependent properties

directly in the syntax grammar. However, an abstract interpreter-based approach

gives Absynthe more semantic reasoning capabilities (like polymorphism).

Domain-specific synthesis SyGuS [4] being a standard synthesis problem specifi-

cation format, has seen a variety of solver approaches. CVC4 [89] is a general-purpose

SMT solver that has support for synthesizing programs in the SyGuS format. CVC4

has complete support for theory of strings and linear integer arithmetic, so it performs

better than Absynthe (which is guided by simple abstract domains) for SyGuS.

However, Absynthe’s strength is generalizability to other kinds of synthesis problems

as demonstrated in synthesis of AutoPandas benchmarks (§ 4.5.2). DryadSynth [52]

explores a reconciling deductive and enumerative synthesis in SyGuS problems limited

to the conditional linear integer arithmetic background theory. Some of their findings

has been adopted by Absynthe (§ 4.4). EuSolver [3] is an enumerative solver that

takes a divide-and-conquer approach. It synthesizes individual programs that are

correct on a subset of examples, and predicates that distinguishes the program and

combines these into a single final solution. Absynthe is close to EuSolver, as it is

also based on enumerative search, but it is also guided by abstract semantics as well.

We plan to support synthesizing conditionals in future work.

Past work solves synthesis problems using domain specific abstractions such as

types and examples [76, 37], over-approximate semantics on table operations [32],

120

refinement types [80], secure declassification [50], abstract domain to verify atomic

sections of a program [107], and SQL equivalence relations [108]. These abstraction

can be designed as a domain and an abstract evaluation semantics can be provided

to Absynthe for synthesizing such programs. However, Absynthe being a general

purpose synthesis tool, will not have domain specific optimizations. We plan to explore

Absynthe as platform deploying domain specific synthesis in future work.

Abstraction-guided Synthesis Simpl [96] combines enumerative search with static

analysis based pruning, which is similar to Absynthe. However, the program search

in Absynthe can be parameterized by a user provided abstract interpreter allowing

the user to write specifications and semantics in a domain fit for the task-at-hand.

Additionally, Absynthe can infer abstract values for the holes in partial programs,

thus guiding the search using the abstract semantics (Figure 4.6). Blaze [110] is very

similar to Absynthe as it uses abstract semantics to guide the search. It adapts

counterexample guided abstraction refinement to synthesis problems by refining the

abstraction when a test fails, and constructing a proof of incorrectness in the process.

However, it starts with a universe of predicates that is used for abstraction refinement,

which is a requirement Absynthe doesn’t place on users. FlashMeta [83] is similar,

but requires the definition of “inverse” semantics for operators using witness functions.

Absynthe, however, requires only the definition of forward abstract semantics and

attempts to derive the inverse semantics automatically where possible.

Learning-based approaches There has been a recent rise of learning based ap-

proaches to make program synthesis more tractable. AutoPandas [13] is an example

of applying neural models to rank candidate choices constructed by other program

generation methods (smart operators in AutoPandas’ case). DeepCoder [11]

trains a deep neural network to predict properties of programs based on input/output

examples. These properties are used to augment the search by an enumerative search

121

or SMT solvers. Absynthe is complementary to these approaches and does not

use machine learning. In future, we plan to explore extensions to Absynthe that

reorders the program search order using a model learned on program text and abstract

semantics. EuPhony [63], on the other hand, uses an approach inspired by transfer

learning to learn a probabilistic higher order grammar, and uses that in enumerative

search to synthesize solutions. Probe [12] learn a probabilistic grammar just-in-time

during synthesis. Their key insight is that many SyGuS programs that pass a few

examples have parts of the syntax that has higher likelihood to be present in the

final solution. In contrast, Absynthe is complementary to the approach of learning

probabilistic grammars; abstract domains can prune the space of programs, while the

grammar can assign higher weights to the terms that should be enumerated earlier.

We leave exploring the synergy between these approaches to future work.

4.7 Conclusion

We presented Absynthe, a tool that combines abstract interpretation and testing to

synthesize programs. It accepts user-defined lightweight abstract domains and partial

semantics for the language as an input, and enables guided search over the space of

programs in the language. We evaluated Absynthe on SyGuS strings benchmarks

and found Absynthe can solve 77% of the benchmarks, most within 7 seconds.

Moreover, Absynthe supports a pay-as-you-go model, where the user only pays for

the abstract domain they are using for synthesis. Finally, to evaluate the generality of

Absynthe to other domains, we use it to synthesize Pandas data frame manipulation

programs in Python from the AutoPandas benchmark suite. Absynthe performs at

par with AutoPandas and synthesizes programs with low specification burden, but

no neural network training costs. We believe Absynthe demonstrates a promising

design choice for design of synthesis tools that leverage testing for correctness along

122

with lightweight abstractions with partial semantics for search guidance.

123

Chapter 5

Conclusion and Future Work

This dissertation describes a synthesis framework that is both general and lightweight.

The two key ideas underpinning the framework are: first, an abstraction-guided search

component that can be inferred directly from the abstract domain and interpreter

definitions. Second, a testing component that checks for correctness and additionally

infers hints in the form of effects to refine the program candidates towards likely

solutions. We demonstrate how simple types and effect labels inferred from failing

tests can synthesize side-effect causing programs efficiently in RbSyn (Chapter 2). In

contrast, Anosy (Chapter 3) demonstrates the use of a precise abstraction–refinement

types to synthesize privacy preserving wrappers for queries on secret data. The use of

refinement types allows Anosy to generate verified bounds that are crucial for security,

without writing test cases. Finally, Absynthe (Chapter 4) abstracts over these tools

to develop a search algorithm that is guided by any user-provided abstract domains

and its semantics. This represents an important step forward in the design of practical

synthesis tools that provide lightweight formal guarantees by developing static program

analyses while ensuring correctness from tests. Together, these contributions show

that techniques from abstract interpretation can be combined with testing to empower

programmers with practical synthesis tools that generate programs in their languages

124

or libraries of choice along with correctness guarantees.

5.1 Future Work

This dissertation lays the groundwork for a some interesting avenues of future work:

Abstraction guided synthesis While Absynthe shows that any abstract domain

can be used to guide the search to synthesize the programs, there are future research

questions that will allow synthesizers to be more efficient. First, can we use Absynthe

as a platform to deploy challenging abstract domains like probabilistic domains or

borrowing/ownership models? This questions boils down to can we have algorithms to

efficiently infer abstract value tags for each hole when generating terms. If Absynthe

scales to such expressive domains, we can synthesize programs that satisfy probabilistic

properties like fairness, quantifying information flow over distributions, or programs

that are resource safe, i.e., do not allocate and free memory, file and network handles

correctly. Second, can Absynthe do joint reasoning over all holes in a term? For

example, consider a function that that has two arguments. Currently, Absynthe

has to concretize one abstract value to infer the abstraction for the other hole. In

contrast, solver-aided tools like Synquid [80] can jointly reason over all holes in a term

and infer weakest preconditions as abstractions for such subgoals. It would be worth

exploring if algorithms from Synquid, that uses unsat cores can be used in the setting

Absynthe to doing joint inference of abstract values. Third, a synthesizer guided by

an abstract interpreter, like Absynthe, is complete with respect to the programs that

can be automatically checked by the abstract interpreter. This limitation implies there

may always be sounds programs that will never be considered because the abstract

interpreter rejected it due to imprecision. A common example of such imprecision

occurs when a type-checker rejects a valid program, and requires the programmer

to provide a type cast to type-check. However, in our setting it would be worth

125

investigating the points at which a synthesizer lost precision and design a human-

feedback loop (akin to a type cast) to keep going despite the imprecision. Moreover, in

our setting the synthesis algorithm has access to concrete test cases which can provide

more information that just using the abstract specification.

Inference from testing RbSyn infers effect annotations for a candidate programs

and refines the program to match the inferred effect. While coarse-grained effects

were effective for the domain of database accessing web apps, other abstractions might

be a better fit for other domains. In general, the research question is can potential

reasons for test failure be automatically inferred as an abstract specification and

used to guide the search. As this inference is guided from test failures these are

under-approximate. In contrast, the abstract interpreters and specifications using

abstract domains provided by the user to the synthesizer as over-approximate. A

key question is can we use principles of incorrectness logic [72] to prune the search

space? I hypothesize just like over-approximations eliminate unsound programs, under-

approximations can give hints to the likely program but not eliminate a family of

terms. Such hints may be used to prioritize the order in which a synthesizer searches

through the program space, making it likely to reach a refined program from test

failure earlier in the search. I plan to explore this in future work.

Learned models Deep learning models for code generation has moved into regular

use in recent years. For example, systems like GitHub Copilot [38] use natural

language as specifications along with existing code in the editor buffer to suggest

code completions. However, systems like Copilot provide no guarantees of correctness,

requiring a manual audit of the generated code and often barring it’s use in safety

critical domains. There are opportunities in combining machine learning models with

reasoning based approaches explored in this dissertation.

This dissertation utilized two key heuristics to explore program in the search

126

space. First, the size of candidate programs, i.e., smaller programs are explored first.

Second, the number of times a candidate has added an effect hole in RbSyn, which

is a proxy for program refinement using guidance from test failure. Deep learning

can be used to learn heuristics to explore likely programs based on how the partial

candidates programs from intermediate search steps are likely to satisfy the provided

specifications. Another potential future work is to leverage large-language models

like GPT-4 [74] to generate programs in one-shot, rather than gradually generating

programs in increasing order of size. As these generated programs will not be correct,

this is an opportunity to design effect error localization techniques to detect where the

candidate is not aligning with the specification and apply program repair techniques.

127

Appendix A

RbSyn: Complete Evaluation and

Synthesis Rules

A.1 Evaluation Rules

We extend λsyn to include errors E . Errors can originate from the evaluation of an

assertion assert e and encapsulates the read effect ϵr and write effect ϵw inferred

from e. Results R of an evaluation can either be a value or an error. Collecting effects

while evaluating the postcondition of tests require special evaluation rules. Figure A.2

shows selected rules of the small step operational semantics for only postconditions

(rest omitted as they are standard rules). The rules prove judgments of the form

JE, c, ⟨ϵr, ϵw⟩, QK ↪→CT JE ′, c′, ⟨ϵ′r, ϵ′w⟩, Q′K that reduce configurations that contain a

dynamic environment E, counter of passed assertions c, the pair of read and write

effects ⟨ϵr, ϵw⟩ collected during evaluation, and postcondition Q under evaluation. Rule

Errors E ::= err(ϵr, ϵw)
Results R ::= v | E

Figure A.1: Extended λsyn.

128

JE, c, ⟨ϵr, ϵw⟩, QK ↪→CT JE ′, c′, ⟨ϵ′r, ϵ′w⟩, Q′K

v ∈ {true, [A]}
JE, c, ⟨ϵr, ϵw⟩, assert vK ↪→CT JE, c+ 1, ⟨ϵr, ϵw⟩, vK

E-AssertPass

v ∈ {false, nil}
JE, c, ⟨ϵr, ϵw⟩, assert vK ↪→CT JE, c, ⟨ϵr, ϵw⟩, err(ϵr, ϵw)K

E-AssertFail

JE, c, ⟨ϵr, ϵw⟩, eK ↪→CT JE ′, c, ⟨ϵ′r, ϵ′w⟩, e′K
JE, c, ⟨ϵr, ϵw⟩, assert eK ↪→CT JE ′, c, ⟨ϵ′r, ϵ′w⟩, assert e′K

E-AssertStep

type_of(vr, va) = (Ar, Aa) m : τa
⟨ϵr,ϵw⟩−−−−→ τ ∈ CT (A)

Ar ≤ A Aa ≤ τa call(A.m, vr, va) = v

JE, c, ⟨ϵ′r, ϵ′w⟩, vr.m(va)K ↪→CT JE, c, ⟨ϵ′r, ϵ′w⟩ ∪ ⟨ϵr, ϵw⟩, vK
E-MethCall

JE, c, ⟨ϵr, ϵw⟩, Q1K ↪→CT JE, c, ⟨ϵ′r, ϵ′w⟩, Q′
1K

JE, c, ⟨ϵr, ϵw⟩, Q1;Q2K ↪→CT JE, c, ⟨ϵ′r, ϵ′w⟩, Q′
1;Q2K

E-SeqStep

JE, c, ⟨ϵr, ϵw⟩, v;Q2K ↪→CT JE, c, ⟨•, •⟩, Q2K
E-SeqVal

JE, c, ⟨ϵr, ϵw⟩, err(ϵr, ϵw);Q2K ↪→CT JE, c, ⟨ϵr, ϵw⟩, err(ϵr, ϵw)K
E-SeqErr

Figure A.2: Selected rules for operational semantics of the postcondition Q

129

E-AssertPass applies when assertion evaluates to a truthy-y value. It also increments

the counter for passed assertions. If e evaluates to a false-y value, it results in an error,

in which case it returns the collected side effects with the error (E-AssertFail).

Evaluation of a library method, gives a union of its effects with the already collected

effects (E-MethCall). During the evaluation of a sequence Q;Q, if the first assertion

evaluates to a value, the evaluation continues discarding all collected effects (E-

SeqVal). If the evaluation of an assert yields an error, the evaluation of postcondition

terminates with the error as final result (E-SeqErr). We define the big step semantics

as follows: Q ⇓ R if ∃E ′, c, ⟨ϵr, ϵw⟩.J[xr → v], 0, ⟨•, •⟩, QK ↪→∗
CT JE ′, c, ⟨ϵr, ϵw⟩,RK, in

other words, evaluating the postcondition in an environment containing the return

value of synthesis goal xr, will evaluate to a result.

A.2 Type-Guided Synthesis

Figure A.3 shows all the type checking and type-directed synthesis rules. The repeated

rules are same as § 2.3. T-Nil type checks the value nil and assigns it the type

Nil. The rules T-True, T-False, T-Obj and T-Err do the same for the values

true, false, [A] and err(ϵr, ϵw) respectively. Similarly T-NegB and T-OrB give

the rules to type check conditionals that contain negation or disjunction. T-EffHole

typechecks an effect hole with the Obj type. It can be narrowed to a more precise

type when synthesis rules are applied. T-Seq does type checking and synthesis for

sequences and T-App type checks or synthesizes terms in the receiver and arguments

of the method call. T-If type checks if-else expressions.

A.3 Algorithm

Algorithm 4 describes the synthesis of candidates that pass a single spec. The algorithm

uses a work list, which initially contains a tuple with the number of passed assertions

130

Σ,Γ ⊢CT e⇝ e : τ

Σ,Γ ⊢CT nil⇝ nil : Nil
T-Nil

Σ,Γ ⊢CT true⇝ true : Bool
T-True

Σ,Γ ⊢CT false⇝ false : Bool
T-False

Σ,Γ ⊢CT [A]⇝ [A] : A
T-Obj

Σ,Γ ⊢CT err(ϵr, ϵw)⇝ err(ϵr, ϵw) : Err
T-Err

Γ(x) = τ

Σ,Γ ⊢CT x⇝ x : τ
T-Var

Σ,Γ ⊢CT b⇝ b′ : Bool
Σ,Γ ⊢CT !b⇝!b′ : Bool

T-NegB

Σ,Γ ⊢CT b1 ⇝ b′1 : Bool
Σ,Γ ⊢CT b2 ⇝ b′2 : Bool

Σ,Γ ⊢CT b1 ∨ b2 ⇝ b′1 ∨ b′2 : Bool
T-OrB

Σ,Γ ⊢CT □ : τ ⇝ □ : τ
T-Hole

Σ,Γ ⊢CT ♢ : ϵ⇝ (♢ : ϵ) : Obj
T-EffHole

v : τ1 ∈ Σ τ1 ≤ τ2
Σ,Γ ⊢CT □ : τ2 ⇝ v : τ1

S-Const
Γ(x) = τ1 τ1 ≤ τ2

Σ,Γ ⊢CT □ : τ2 ⇝ x : τ1
S-Var

m : τ1 → τ2 ∈ CT (A) τ2 ≤ τ3

Σ,Γ ⊢CT □ : τ3 ⇝ (□ : A).m(□ : τ1) : τ2
S-App

Σ,Γ ⊢CT e1 ⇝ e′1 : τ1 Σ,Γ ⊢CT e2 ⇝ e′2 : τ2

Σ,Γ ⊢CT e1; e2 ⇝ e′1; e
′
2 : τ2

T-Seq

Σ,Γ ⊢CT e1 ⇝ e′1 : τ Σ,Γ ⊢CT e2 ⇝ e′2 : τ3
m : τ1 → τ2 ∈ CT (A) τ ≤ A τ3 ≤ τ1

Σ,Γ ⊢CT e1.m(e2)⇝ e′1.m(e′2) : τ2
T-App

Σ,Γ ⊢CT e1 ⇝ e′1 : τ1
Σ,Γ[x 7→ τ1] ⊢CT e2 ⇝ e′2 : τ2

Σ,Γ ⊢CT let x = e1 in e2 ⇝ let x = e′1 in e′2 : τ2
T-Let

Σ,Γ ⊢CT b⇝ b′ : Bool
Σ,Γ ⊢CT e1 ⇝ e′1 : τ1 Σ,Γ ⊢CT e2 ⇝ e′2 : τ2

Σ,Γ ⊢CT if b then e1 else e2 ⇝ if b′ then e′1 else e′2 : τ1 ∪ τ2
T-If

Figure A.3: Type checking and type-directed synthesis rules

131

Algorithm 4 Synthesis of programs that passes a spec s

1: procedure Generate(τ1 → τ2, CT , Σ, s, maxSize)
2: Γ ← [x 7→ τ1]
3: e0 ← □ : τ2
4: workList ← [(0, e0)]
5: while workList is not empty do
6: (c, eb)← pop(workList)
7: ωτ ← {(c, et) | Σ,Γ ⊢ eb ⇝ et : τ}
8: ωeval ← {(c, et) ∈ ωτ ∧ evaluable(et)}
9: ωr ← ωτ − ωeval

10: for all (c, et) ∈ ωeval do
11: cr, vr ← EvalProgram(et, s)
12: if vr = err(ϵr, ϵw) then
13: ωr ← ωr ∪ {(c, ef) | Σ,Γ, ϵr ⊢ et ↠ ef}
14: else
15: return et
16: end if
17: end for
18: ωr ← {(c, eb) ∈ ωr ∧ size(eb) ≤ maxSize}
19: workList ← reorder(workList + ωr)
20: end while
21: return Error: No solution found
22: end procedure
23:
24: procedure EvalProgram(e, ⟨S,Q⟩)
25: P ← def m(x) = e, E ← []
26: (c,R)← JE, 0, ⟨•, •⟩, P ;S;QK ↪→∗

CT JE ′, c, ⟨ϵr, ϵw⟩,RK
27: return (c,R)
28: end procedure

132

evaluable e1; e2 = evaluable e1 ∧ evaluable e2
evaluable e1.m(e2) = evaluable e1 ∧ evaluable e2
evaluable □ : τ = false
evaluable let x = e1 in e2 = evaluable e1 ∧ evaluable e2
evaluable if b then e1 else e2 = evaluable b ∧ evaluable e1 ∧ evaluable e2
evaluable !b = evaluable b
evaluable b1 ∨ b2 = evaluable b1 ∧ evaluable b2
evaluable _ = true

size e1; e2 = size e1 + size e2
size e1.m(e2) = size e1 + size e2 + 1
size let x = e1 in e2 = size e1 + size e2
size if b then e1 else e2 = size b+ size e1 + size e2
size !b = size b
size b1 ∨ b2 = size b1 + size b2
size _ = 0

Figure A.4: Helper functions used by RbSyn

starting at 0 initially and the initial hole of type τ2. The first tuple is popped off the

work list and applies type or effect guided synthesis rules, the ⇝ relation, to a base

expression eb to build the set of new expressions ωτ . Next, expressions with no holes

are filtered into a list of evaluable expressions ωeval. Then, EvalProgram is called

to make a program def m(x) = et and evaluate spec s in an environment E, starting

from a passed assertion count of 0.

If the evaluation of the postcondition results in an error err(ϵr, ϵw), the algorithm

proceeds to introduce an effect hole, using the relation ↠ to build the set ωϵ. If a

program passes all the assertions then it means a correct solution has been found so,

Generate returns it. Finally, the algorithm collects all the remainder expressions

ωr with holes and filters the programs that exceed the maximum permissible size

maxSize. This bounds the search to particular search space size. It then takes the

filtered programs and programs from the remainder of the work list and reorders them.

The programs are sorted by the number of passed assertions c in the decreasing order

133

⟨e1, b1,Ψ1⟩ ⊕ ⟨e2, b2,Ψ2⟩ = ⟨b1, b1 ∨ b2,Ψ1 ∪Ψ2⟩
if e1 ≡ true, e2 ≡ false and b1 ≡ !b2

(A.1)

⟨e1, b1,Ψ1⟩ ⊕ ⟨e2, b2,Ψ2⟩ = ⟨b2, b1 ∨ b2,Ψ1 ∪Ψ2⟩
if e1 ≡ false, e2 ≡ true and b1 ≡ !b2

(A.2)

⟨e1, b1,Ψ1⟩ ⊕ ⟨e2, b2,Ψ2⟩ = ⟨e1, b1,Ψ1⟩ ⊕ ⟨e2, bg,Ψ2⟩ if bg ≡ !b1

and ∀⟨Si, Qi⟩ ∈ Ψ2.def m(x) = bg ⊢ Si; assert xr ⇓ v
(A.3)

⟨e1, b1,Ψ1⟩ ⊕ ⟨e2, b2,Ψ2⟩ = ⟨e1, bg,Ψ1⟩ ⊕ ⟨e2, b2,Ψ2⟩ if bg ≡ !b2

and ∀⟨Si, Qi⟩ ∈ Ψ1.def m(x) = bg ⊢ Si; assert !xr ⇓ v
(A.4)

Figure A.5: Branch pruning rules.

and then by the program size in the increasing order. This assumes that a program

that is more likely correct and smaller will be selected earlier for processing in the

work list. Lastly, if Generate doesn’t find a correct program in that search space it

will return an error for the same.

Figure A.4 shows the formal definitions of hasHole, and size functions.

A.4 Branch pruning rules

Figure A.5 formally describes the rules that allows RbSyn to do term rewriting in

λsyn for branch pruning. These are useful particularly for reducing boolean programs.

Rules A.1 and A.2 allows us to rewrite expressions into their branch condition if the

expression body is true or false reducing expressions like if b then true else false

to b. Rules A.3 and A.4 guess a conditional that is the negation of the other, if the

negation holds for the tests. Any ⊕ term where two branch conditions are negations

of each other reflect a shorter program if b1 then e1 else e2 in λsyn. If it is a boolean

program, then it might even enable application of rules A.1 and A.2 producing a single

line program.

134

Bibliography

[1] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. “Recursive program
synthesis”. In: International conference on computer aided verification. Springer.
2013, pp. 934–950. doi: 10.1007/978-3-642-39799-8_67.

[2] Rajeev Alur, Pavol Černỳ, and Arjun Radhakrishna. “Synthesis through unifi-
cation”. In: International Conference on Computer Aided Verification. Springer.
2015, pp. 163–179. doi: 10.1007/978-3-319-21668-3_10.

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. “Scaling Enumerative
Program Synthesis via Divide and Conquer”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,
Part I. Vol. 10205. Lecture Notes in Computer Science. 2017, pp. 319–336. doi:
10.1007/978-3-662-54577-5_18.

[4] Rajeev Alur et al. “Syntax-guided synthesis”. In: Formal Methods in Computer-
Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013. IEEE,
2013, pp. 1–8. url: https://ieeexplore.ieee.org/document/6679385/.

[5] Rajeev Alur et al. “SyGuS-Comp 2017: Results and Analysis”. In: Proceedings
Sixth Workshop on Synthesis, SYNTCAV 2017, Heidelberg, Germany, 22nd
July 2017. Vol. 260. EPTCS. 2017, pp. 97–115. doi: 10.4204/EPTCS.260.9.

[6] Greg Anderson et al. “Neurosymbolic Reinforcement Learning with Formally
Verified Exploration”. In: Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual. Ed. by Hugo Larochelle et
al. 2020. url: https://proceedings.neurips.cc/paper/2020/hash/
448d5eda79895153938a8431919f4c9f-Abstract.html.

[7] Owen Arden et al. “Sharing Mobile Code Securely with Information Flow
Control”. In: IEEE Symposium on Security and Privacy, (S&P 2012), 21-23
May 2012, San Francisco, California, USA. IEEE Computer Society, 2012,
pp. 191–205. doi: 10.1109/SP.2012.22.

[8] Aslan Askarov and Andrei Sabelfeld. “Gradual Release: Unifying Declassifi-
cation, Encryption and Key Release Policies”. In: 2007 IEEE Symposium on
Security and Privacy (S&P 2007), 20-23 May 2007, Oakland, California, USA.
IEEE Computer Society, 2007, pp. 207–221. doi: 10.1109/SP.2007.22.

135

https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-662-54577-5_18
https://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.4204/EPTCS.260.9
https://proceedings.neurips.cc/paper/2020/hash/448d5eda79895153938a8431919f4c9f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/448d5eda79895153938a8431919f4c9f-Abstract.html
https://doi.org/10.1109/SP.2012.22
https://doi.org/10.1109/SP.2007.22

[9] Michael Backes, Boris Köpf, and Andrey Rybalchenko. “Automatic Discovery
and Quantification of Information Leaks”. In: 30th IEEE Symposium on Security
and Privacy (S&P 2009), 17-20 May 2009, Oakland, California, USA. IEEE
Computer Society, 2009, pp. 141–153. doi: 10.1109/SP.2009.18.

[10] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “Widening operators for
powerset domains”. In: International Journal on Software Tools for Technology
Transfer 9.3-4 (2007), pp. 413–414. doi: 10.1007/s10009-007-0029-y.

[11] Matej Balog et al. “DeepCoder: Learning to Write Programs”. In: 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. url:
https://openreview.net/forum?id=ByldLrqlx.

[12] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. “Just-in-time learning for
bottom-up enumerative synthesis”. In: Proc. ACM Program. Lang. 4.OOPSLA
(2020), 227:1–227:29. doi: 10.1145/3428295.

[13] Rohan Bavishi et al. “AutoPandas: neural-backed generators for program
synthesis”. In: Proc. ACM Program. Lang. 3.OOPSLA (2019), 168:1–168:27.
doi: 10.1145/3360594.

[14] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. “νZ - An Optimizing
SMT Solver”. In: Tools and Algorithms for the Construction and Analysis
of Systems - 21st International Conference, TACAS 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings. Vol. 9035. Lecture Notes
in Computer Science. Springer, 2015, pp. 194–199. doi: 10.1007/978-3-662-
46681-0_14.

[15] Robert L Bocchino Jr et al. “A type and effect system for deterministic parallel
Java”. In: Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications. 2009, pp. 97–116. doi: 10.
1145/1640089.1640097.

[16] Alexander Borgida, John Mylopoulos, and Raymond Reiter. “On the frame
problem in procedure specifications”. In: IEEE Transactions on Software Engi-
neering 21.10 (1995), pp. 785–798. doi: 10.1109/32.469460.

[17] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann.
“Effects as capabilities: effect handlers and lightweight effect polymorphism”. In:
Proc. ACM Program. Lang. 4.OOPSLA (2020), 126:1–126:30. doi: 10.1145/
3428194.

[18] Niklas Broberg, Bart van Delft, and David Sands. “Paragon - Practical pro-
gramming with information flow control”. In: Journal of Computer Security
25.4-5 (2017), pp. 323–365. doi: 10.3233/JCS-15791.

[19] José González Cabañas et al. “Unique on Facebook: formulation and evidence
of (nano)targeting individual users with non-PII data”. In: IMC ’21: ACM
Internet Measurement Conference, Virtual Event, USA, November 2-4, 2021.
ACM, 2021, pp. 464–479. doi: 10.1145/3487552.3487861.

136

https://doi.org/10.1109/SP.2009.18
https://doi.org/10.1007/s10009-007-0029-y
https://openreview.net/forum?id=ByldLrqlx
https://doi.org/10.1145/3428295
https://doi.org/10.1145/3360594
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1109/32.469460
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.3233/JCS-15791
https://doi.org/10.1145/3487552.3487861

[20] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. “Optimizing
database-backed applications with query synthesis”. In: ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’13,
Seattle, WA, USA, June 16-19, 2013. Vol. 48. 6. ACM New York, NY, USA,
2013, pp. 3–14. doi: 10.1145/2499370.2462180.

[21] Stephen Chong and Andrew C Myers. “Security policies for downgrading”. In:
Proceedings of the 11th ACM conference on Computer and communications
security. 2004, pp. 198–209. doi: 10.1145/1030083.1030110.

[22] David Clark, Sebastian Hunt, and Pasquale Malacaria. “Quantitative Infor-
mation Flow, Relations and Polymorphic Types”. In: Journal of Logic and
Computation 15.2 (2005), pp. 181–199. doi: 10.1093/logcom/exi009.

[23] Adele Cooper. Facebook Ads: A Guide to Targeting and Reporting. https:
//web.archive.org/web/20110521050104/http://www.openforum.com/
articles/facebook-ads-a-guide-to-targeting-and-reporting-adele-
cooper. 2011.

[24] Patrick Cousot and Radhia Cousot. “Static determination of dynamic prop-
erties of programs”. In: Proceedings of the 2nd International Symposium on
Programming, Paris, France. Dunod. 1976.

[25] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints”. In: Conference Record of the Fourth ACM Symposium on Principles
of Programming Languages, Los Angeles, California, USA, January 1977. ACM,
1977, pp. 238–252. doi: 10.1145/512950.512973.

[26] Patrick Cousot et al. “The ASTREÉ Analyzer”. In: Programming Languages
and Systems, 14th European Symposium on Programming,ESOP 2005, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings. Vol. 3444. Lecture
Notes in Computer Science. Springer, 2005, pp. 21–30. doi: 10.1007/978-3-
540-31987-0_3.

[27] Aaron Craig et al. “Capabilities: Effects for Free”. In: Formal Methods and
Software Engineering - 20th International Conference on Formal Engineering
Methods, ICFEM 2018, Gold Coast, QLD, Australia, November 12-16, 2018,
Proceedings. Ed. by Jing Sun and Meng Sun. Vol. 11232. Lecture Notes in
Computer Science. Springer, 2018, pp. 231–247. doi: 10.1007/978-3-030-
02450-5_14.

[28] Bart van Delft, Sebastian Hunt, and David Sands. “Very static enforcement
of dynamic policies”. In: Principles of Security and Trust - 4th International
Conference, POST 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings. Springer. 2015, pp. 32–52. doi: 10.1007/978-3-662-46666-7_3.

137

https://doi.org/10.1145/2499370.2462180
https://doi.org/10.1145/1030083.1030110
https://doi.org/10.1093/logcom/exi009
https://web.archive.org/web/20110521050104/http://www.openforum.com/articles/facebook-ads-a-guide-to-targeting-and-reporting-adele-cooper
https://web.archive.org/web/20110521050104/http://www.openforum.com/articles/facebook-ads-a-guide-to-targeting-and-reporting-adele-cooper
https://web.archive.org/web/20110521050104/http://www.openforum.com/articles/facebook-ads-a-guide-to-targeting-and-reporting-adele-cooper
https://web.archive.org/web/20110521050104/http://www.openforum.com/articles/facebook-ads-a-guide-to-targeting-and-reporting-adele-cooper
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-030-02450-5_14
https://doi.org/10.1007/978-3-030-02450-5_14
https://doi.org/10.1007/978-3-662-46666-7_3

[29] Dominique Devriese and Frank Piessens. “Information flow enforcement in
monadic libraries”. In: Proceedings of TLDI 2011: 2011 ACM SIGPLAN Inter-
national Workshop on Types in Languages Design and Implementation, Austin,
TX, USA, January 25, 2011. ACM, 2011, pp. 59–72. doi: 10.1145/1929553.
1929564.

[30] Diaspora Inc. Diaspora: A privacy-aware, distributed, open source social network.
https://github.com/diaspora/diaspora. 2020.

[31] Yu Feng et al. “Component-based synthesis for complex APIs”. In: Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages.
2017, pp. 599–612. doi: 10.1145/3093333.3009851.

[32] Yu Feng et al. “Component-based synthesis of table consolidation and trans-
formation tasks from examples”. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017. ACM, 2017, pp. 422–436. doi:
10.1145/3062341.3062351.

[33] Yu Feng et al. “Program synthesis using conflict-driven learning”. In: Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. Vol. 53.
4. ACM New York, NY, USA, 2018, pp. 420–435. doi: 10.1145/3192366.
3192382.

[34] John K Feser, Swarat Chaudhuri, and Isil Dillig. “Synthesizing data structure
transformations from input-output examples”. In: Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation
50.6 (2015), pp. 229–239. doi: 10.1145/2737924.2737977.

[35] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3—where programs meet
provers”. In: European symposium on programming. Springer. 2013, pp. 125–128.
doi: 10.1007/978-3-642-37036-6_8.

[36] Jeffrey Foster et al. RDL: Types, type checking, and contracts for Ruby. https:
//github.com/tupl-tufts/rdl. 2020.

[37] Jonathan Frankle et al. “Example-directed synthesis: a type-theoretic interpre-
tation”. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages 51.1 (2016), pp. 802–815. doi:
10.1145/2837614.2837629.

[38] Nat Friedman. Introducing GitHub Copilot: your AI pair programmer. url:
https://github.blog/2021-06-29-introducing-github-copilot-ai-
pair-programmer/.

[39] Joel Galenson et al. “Codehint: Dynamic and interactive synthesis of code
snippets”. In: Proceedings of the 36th International Conference on Software
Engineering. 2014, pp. 653–663. doi: 10.1145/2568225.2568250.

138

https://doi.org/10.1145/1929553.1929564
https://doi.org/10.1145/1929553.1929564
https://github.com/diaspora/diaspora
https://doi.org/10.1145/3093333.3009851
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1007/978-3-642-37036-6_8
https://github.com/tupl-tufts/rdl
https://github.com/tupl-tufts/rdl
https://doi.org/10.1145/2837614.2837629
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://doi.org/10.1145/2568225.2568250

[40] GitLab B.V. GitLab is an open source end-to-end software development platform
with built-in version control, issue tracking, code review, CI/CD, and more.
https://gitlab.com/gitlab-org/gitlab. 2020.

[41] Joseph A. Goguen and José Meseguer. “Security Policies and Security Models”.
In: 1982 IEEE Symposium on Security and Privacy, Oakland, CA, USA, April
26-28, 1982. IEEE Computer Society, 1982, pp. 11–20. doi: 10.1109/SP.1982.
10014.

[42] Colin S. Gordon. “Designing with Static Capabilities and Effects: Use, Mention,
and Invariants (Pearl)”. In: 34th European Conference on Object-Oriented
Programming, ECOOP 2020, November 15-17, 2020, Berlin, Germany (Virtual
Conference). Ed. by Robert Hirschfeld and Tobias Pape. Vol. 166. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 10:1–10:25. doi:
10.4230/LIPIcs.ECOOP.2020.10.

[43] Marco Guarnieri, Srdjan Marinovic, and David A. Basin. “Securing Databases
from Probabilistic Inference”. In: 30th IEEE Computer Security Foundations
Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017. IEEE
Computer Society, 2017, pp. 343–359. doi: 10.1109/CSF.2017.30.

[44] Marco Guarnieri et al. “Information-Flow Control for Database-Backed Appli-
cations”. In: IEEE European Symposium on Security and Privacy, EuroS&P
2019, Stockholm, Sweden, June 17-19, 2019. IEEE, 2019, pp. 79–94. doi:
10.1109/EuroSP.2019.00016.

[45] Sumit Gulwani. “Automating string processing in spreadsheets using input-
output examples”. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2011, Austin, TX,
USA, January 26-28, 2011. Ed. by Thomas Ball and Mooly Sagiv. ACM, 2011,
pp. 317–330. doi: 10.1145/1926385.1926423.

[46] Sumit Gulwani. “Automating string processing in spreadsheets using input-
output examples”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages 46.1 (2011), pp. 317–330.
doi: 10.1145/1925844.1926423.

[47] Sumit Gulwani, William R Harris, and Rishabh Singh. “Spreadsheet data
manipulation using examples”. In: Communications of the ACM 55.8 (2012),
pp. 97–105. doi: 10.1145/2240236.2240260.

[48] Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. Absynthe:
Abstract Interpretation-Guided Synthesis. 2023. arXiv: 2302.13145 [cs.PL].

[49] Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. “RbSyn: Type-
and Effect-Guided Program Synthesis”. In: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and
Implementation. PLDI 2021. Virtual, Canada: Association for Computing
Machinery, 2021, pp. 344–358. isbn: 9781450383912. doi: 10.1145/3453483.
3454048.

139

https://gitlab.com/gitlab-org/gitlab
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.4230/LIPIcs.ECOOP.2020.10
https://doi.org/10.1109/CSF.2017.30
https://doi.org/10.1109/EuroSP.2019.00016
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/2240236.2240260
https://arxiv.org/abs/2302.13145
https://doi.org/10.1145/3453483.3454048
https://doi.org/10.1145/3453483.3454048

[50] Sankha Narayan Guria et al. “ANOSY: approximated knowledge synthesis with
refinement types for declassification”. In: PLDI ’22: 43rd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implementation,
San Diego, CA, USA, June 13 - 17, 2022. Ed. by Ranjit Jhala and Isil Dillig.
ACM, 2022, pp. 15–30. doi: 10.1145/3519939.3523725.

[51] William R Harris and Sumit Gulwani. “Spreadsheet table transformations
from examples”. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation 46.6 (2011), pp. 317–328.
doi: 10.1145/1993316.1993536.

[52] Kangjing Huang et al. “Reconciling enumerative and deductive program syn-
thesis”. In: Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London,
UK, June 15-20, 2020. Ed. by Alastair F. Donaldson and Emina Torlak. ACM,
2020, pp. 1159–1174. doi: 10.1145/3385412.3386027.

[53] Civilized Discourse Construction Kit Inc. Discourse: A platform for community
discussion. https://github.com/discourse/discourse. 2020.

[54] Michael B James et al. “Digging for fold: synthesis-aided API discovery for
Haskell”. In: Proceedings of the ACM on Programming Languages 4.OOPSLA
(2020), pp. 1–27. doi: 10.1145/3428273.

[55] Susmit Jha et al. “Oracle-guided component-based program synthesis”. In: 2010
ACM/IEEE 32nd International Conference on Software Engineering. Vol. 1.
IEEE. 2010, pp. 215–224. doi: 10.1145/1806799.1806833.

[56] Andrew Johnson et al. “Exploring and Enforcing Security Guarantees via
Program Dependence Graphs”. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI ’15.
ACM, 2015. doi: 10.1145/2737924.2737957.

[57] Milod Kazerounian et al. “Type-level computations for Ruby libraries”. In: Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. 2019, pp. 966–979. doi: 10.1145/3314221.3314630.

[58] Jinwoo Kim et al. “Semantics-guided synthesis”. In: Proc. ACM Program. Lang.
5.POPL (2021), pp. 1–32. doi: 10.1145/3434311.

[59] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. “Strongly Typed Heteroge-
neous Collections”. In: Proceedings of the 2004 ACM SIGPLAN Workshop on
Haskell. Haskell ’04. Snowbird, Utah, USA: Association for Computing Machin-
ery, 2004, pp. 96–107. isbn: 1581138504. doi: 10.1145/1017472.1017488.

[60] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. “SMT-based model
checking for recursive programs”. In: Formal Methods Syst. Des. 48.3 (2016),
pp. 175–205. doi: 10.1007/s10703-016-0249-4.

140

https://doi.org/10.1145/3519939.3523725
https://doi.org/10.1145/1993316.1993536
https://doi.org/10.1145/3385412.3386027
https://github.com/discourse/discourse
https://doi.org/10.1145/3428273
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/2737924.2737957
https://doi.org/10.1145/3314221.3314630
https://doi.org/10.1145/3434311
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1007/s10703-016-0249-4

[61] Boris Köpf and Andrey Rybalchenko. “Approximation and Randomization for
Quantitative Information-Flow Analysis”. In: Proceedings of the 23rd IEEE
Computer Security Foundations Symposium, CSF 2010, Edinburgh, United
Kingdom, July 17-19, 2010. IEEE Computer Society, 2010, pp. 3–14. doi:
10.1109/CSF.2010.8.

[62] Martin Kucera et al. “Synthesis of Probabilistic Privacy Enforcement”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017. ACM, 2017, pp. 391–408. doi: 10.1145/3133956.3134079.

[63] Woosuk Lee et al. “Accelerating search-based program synthesis using learned
probabilistic models”. In: Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018. Ed. by Jeffrey S. Foster and Dan Grossman. ACM,
2018, pp. 436–449. doi: 10.1145/3192366.3192410.

[64] Nico Lehmann et al. “STORM: Refinement Types for Secure Web Applications”.
In: 15th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2021, July 14-16, 2021. USENIX Association, 2021, pp. 441–459. url:
https://www.usenix.org/conference/osdi21/presentation/lehmann.

[65] Peng Li and Steve Zdancewic. “Encoding Information Flow in Haskell”. In: 19th
IEEE Computer Security Foundations Workshop, (CSFW-19 2006), 5-7 July
2006, Venice, Italy. IEEE Computer Society, 2006, p. 16. doi: 10.1109/CSFW.
2006.13.

[66] Sheng Liang, Paul Hudak, and Mark Jones. “Monad Transformers and Modular
Interpreters”. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’95. San Francisco, Califor-
nia, USA: Association for Computing Machinery, 1995, pp. 333–343. isbn:
0897916921. doi: 10.1145/199448.199528.

[67] Justin Lubin et al. “Program sketching with live bidirectional evaluation”. In:
Proceedings of the ACM on Programming Languages 4.ICFP (2020), 109:1–
109:29. doi: 10.1145/3408991.

[68] Piotr Mardziel et al. “Dynamic enforcement of knowledge-based security policies
using probabilistic abstract interpretation”. In: Journal of Computer Security
21.4 (2013), pp. 463–532. doi: 10.3233/JCS-130469.

[69] J.L. Massey. “Guessing and entropy”. In: Proceedings of 1994 IEEE Interna-
tional Symposium on Information Theory. 1994, pp. 204–. doi: 10.1109/ISIT.
1994.394764.

[70] Bertrand Meyer. “Framing the Frame Problem”. In: Dependable Software Sys-
tems Engineering. Vol. 40. IOS Press, 2015, pp. 193–203.

[71] Jaideep Nijjar and Tevfik Bultan. “Bounded verification of Ruby on Rails data
models”. In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis. 2011, pp. 67–77. doi: 10.1145/2001420.2001429.

141

https://doi.org/10.1109/CSF.2010.8
https://doi.org/10.1145/3133956.3134079
https://doi.org/10.1145/3192366.3192410
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/3408991
https://doi.org/10.3233/JCS-130469
https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1145/2001420.2001429

[72] Peter W. O’Hearn. “Incorrectness logic”. In: Proc. ACM Program. Lang. 4.POPL
(2020), 10:1–10:32. doi: 10.1145/3371078. url: https://doi.org/10.1145/
3371078.

[73] Hakjoo Oh et al. “Design and implementation of sparse global analyses for
C-like languages”. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012.
ACM, 2012, pp. 229–238. doi: 10.1145/2254064.2254092.

[74] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[75] Alfonso Ortega, Marina de la Cruz, and Manuel Alfonseca. “Christiansen
Grammar Evolution: Grammatical Evolution With Semantics”. In: IEEE Trans.
Evol. Comput. 11.1 (2007), pp. 77–90. doi: 10.1109/TEVC.2006.880327.

[76] Peter-Michael Osera and Steve Zdancewic. “Type-and-example-directed pro-
gram synthesis”. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015. Ed. by David Grove and Stephen M. Blackburn. ACM, 2015,
pp. 619–630. doi: 10.1145/2737924.2738007.

[77] James Parker, Niki Vazou, and Michael Hicks. “LWeb: information flow security
for multi-tier web applications”. In: Proceedings of the ACM on Programming
Languages 3.POPL (2019), 75:1–75:30. doi: 10.1145/3290388.

[78] Daniel Perelman et al. “Test-driven synthesis”. In: vol. 49. 6. ACM New York,
NY, USA, 2014, pp. 408–418. doi: 10.1145/2666356.2594297.

[79] Phitchaya Mangpo Phothilimthana et al. “Swizzle Inventor: Data Movement
Synthesis for GPU Kernels”. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019. ACM, 2019,
pp. 65–78. doi: 10.1145/3297858.3304059.

[80] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. “Program synthesis
from polymorphic refinement types”. In: vol. 51. 6. ACM New York, NY, USA,
2016, pp. 522–538. doi: 10.1145/2908080.2908093.

[81] Nadia Polikarpova and Ilya Sergey. “Structuring the synthesis of heap-manipulating
programs”. In: Proceedings of the ACM on Programming Languages 3.POPL
(2019), pp. 1–30. doi: 10.1145/3290385.

[82] Nadia Polikarpova et al. “Liquid information flow control”. In: Proceedings
of the ACM on Programming Languages 4.ICFP (2020), 105:1–105:30. doi:
10.1145/3408987.

[83] Oleksandr Polozov and Sumit Gulwani. “FlashMeta: A Framework for Inductive
Program Synthesis”. In: Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions. OOPSLA 2015. Pittsburgh, PA, USA: Association for Computing Machin-
ery, 2015, pp. 107–126. isbn: 9781450336895. doi: 10.1145/2814270.2814310.

142

https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.1145/2254064.2254092
https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/TEVC.2006.880327
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/3290388
https://doi.org/10.1145/2666356.2594297
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3290385
https://doi.org/10.1145/3408987
https://doi.org/10.1145/2814270.2814310

[84] Corneliu Popeea and Wei-Ngan Chin. “Inferring Disjunctive Postconditions”.
In: Advances in Computer Science - ASIAN 2006. Secure Software and Related
Issues, 11th Asian Computing Science Conference, Tokyo, Japan, December 6-8,
2006, Revised Selected Papers. Vol. 4435. Lecture Notes in Computer Science.
Springer, 2006, pp. 331–345. doi: 10.1007/978-3-540-77505-8_26.

[85] François Pottier and Vincent Simonet. “Information flow inference for ML”. In:
Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Portland, OR, USA, January 16-18,
2002. ACM, 2002, pp. 319–330. doi: 10.1145/503272.503302.

[86] Mukund Raghothaman and Abhishek Udupa. “Language to Specify Syntax-
Guided Synthesis Problems”. In: CoRR abs/1405.5590 (2014). arXiv: 1405.
5590. url: http://arxiv.org/abs/1405.5590.

[87] Jeff Reback et al. pandas-dev/pandas: Pandas 1.4.4. Version v1.4.4. Aug. 2022.
doi: 10.5281/zenodo.7037953.

[88] Brianna M Ren and Jeffrey S Foster. “Just-in-time static type checking for
dynamic languages”. In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 2016, pp. 462–476. doi:
10.1145/2908080.2908127.

[89] Andrew Reynolds and Cesare Tinelli. “SyGuS Techniques in the Core of an
SMT Solver”. In: Proceedings Sixth Workshop on Synthesis, SYNTCAV 2017,
Heidelberg, Germany, 22nd July 2017. Ed. by Dana Fisman and Swen Jacobs.
Vol. 260. EPTCS. 2017, pp. 81–96. doi: 10.4204/EPTCS.260.8.

[90] Andrew Reynolds et al. “Counterexample-Guided Quantifier Instantiation
for Synthesis in SMT”. In: Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part II. Ed. by Daniel Kroening and Corina S. Pasareanu. Vol. 9207. Lecture
Notes in Computer Science. Springer, 2015, pp. 198–216. doi: 10.1007/978-
3-319-21668-3_12.

[91] Alejandro Russo. “Functional pearl: two can keep a secret, if one of them uses
Haskell”. In: Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September
1-3, 2015. ACM, 2015, pp. 280–288. doi: 10.1145/2784731.2784756.

[92] Andrei Sabelfeld and Andrew C. Myers. “Language-based information-flow
security”. In: IEEE Journal on Selected Areas in Communications 21.1 (2003),
pp. 5–19. doi: 10.1109/JSAC.2002.806121.

[93] Andrei Sabelfeld and David Sands. “Declassification: Dimensions and principles”.
In: Journal of Computer Security 17.5 (2009), pp. 517–548. doi: 10.3233/JCS-
2009-0352.

[94] Claude E. Shannon. “A mathematical theory of communication”. In: ACM
SIGMOBILE Mobile Computing and Communications Review 5.1 (2001), pp. 3–
55. doi: 10.1145/584091.584093.

143

https://doi.org/10.1007/978-3-540-77505-8_26
https://doi.org/10.1145/503272.503302
https://arxiv.org/abs/1405.5590
https://arxiv.org/abs/1405.5590
http://arxiv.org/abs/1405.5590
https://doi.org/10.5281/zenodo.7037953
https://doi.org/10.1145/2908080.2908127
https://doi.org/10.4204/EPTCS.260.8
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.1145/584091.584093

[95] Geoffrey Smith. “On the Foundations of Quantitative Information Flow”. In:
Foundations of Software Science and Computational Structures, 12th Inter-
national Conference, FOSSACS 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings. Vol. 5504. Lecture Notes in Computer Science.
Springer, 2009, pp. 288–302. doi: 10.1007/978-3-642-00596-1_21.

[96] Sunbeom So and Hakjoo Oh. “Synthesizing Imperative Programs from Examples
Guided by Static Analysis”. In: Static Analysis - 24th International Symposium,
SAS 2017, New York, NY, USA, August 30 - September 1, 2017, Proceedings.
Ed. by Francesco Ranzato. Vol. 10422. Lecture Notes in Computer Science.
Springer, 2017, pp. 364–381. doi: 10.1007/978-3-319-66706-5_18.

[97] Armando Solar-Lezama. “Program sketching”. In: Int. J. Softw. Tools Technol.
Transf. 15.5-6 (2013), pp. 475–495. doi: 10.1007/s10009-012-0249-7.

[98] Armando Solar-Lezama et al. “Combinatorial sketching for finite programs”. In:
Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2006, San Jose, CA,
USA, October 21-25, 2006. ACM, 2006, pp. 404–415. doi: 10.1145/1168857.
1168907.

[99] Deian Stefan et al. “Flexible dynamic information flow control in Haskell”. In:
Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, Haskell 2011,
Tokyo, Japan, 22 September 2011. ACM, 2011, pp. 95–106. doi: 10.1145/
2034675.2034688.

[100] Ian Sweet et al. “What’s the Over/Under? Probabilistic Bounds on Information
Leakage”. In: Principles of Security and Trust - 7th International Conference,
POST 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings. Vol. 10804. Lecture Notes in Computer Science. Springer, 2018,
pp. 3–27. doi: 10.1007/978-3-319-89722-6_1.

[101] Emina Torlak and Rastislav Bodik. “Growing solver-aided languages with
rosette”. In: Proceedings of the 2013 ACM international symposium on New
ideas, new paradigms, and reflections on programming & software. 2013, pp. 135–
152. doi: 10.1145/2509578.2509586.

[102] Emina Torlak and Rastislav Bodik. “A lightweight symbolic virtual machine
for solver-aided host languages”. In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation 49.6 (2014),
pp. 530–541. doi: 10.1145/2594291.2594340.

[103] Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. “Abstract Refinement
Types”. In: Programming Languages and Systems - 22nd European Symposium
on Programming, ESOP 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings. Vol. 7792. Lecture Notes in Computer Science. Springer,
2013, pp. 209–228. doi: 10.1007/978-3-642-37036-6_13.

144

https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-319-66706-5_18
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1007/978-3-319-89722-6_1
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1007/978-3-642-37036-6_13

[104] Niki Vazou et al. “Refinement Types for Haskell”. In: Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming. ICFP
’14. Gothenburg, Sweden: Association for Computing Machinery, 2014, pp. 269–
282. isbn: 9781450328739. doi: 10.1145/2628136.2628161.

[105] Niki Vazou et al. “Refinement reflection: complete verification with SMT”. In:
Proceedings of the ACM on Programming Languages 2.POPL (2018), 53:1–53:31.
doi: 10.1145/3158141.

[106] Niki Vazou et al. “Theorem Proving for All: Equational Reasoning in Liq-
uid Haskell (Functional Pearl)”. In: Proceedings of the 11th ACM SIGPLAN
International Symposium on Haskell. Haskell 2018. St. Louis, MO, USA: As-
sociation for Computing Machinery, 2018, pp. 132–144. isbn: 9781450358354.
doi: 10.1145/3242744.3242756.

[107] Martin T. Vechev, Eran Yahav, and Greta Yorsh. “Abstraction-guided synthesis
of synchronization”. In: Proceedings of the 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2010, Madrid,
Spain, January 17-23, 2010. Ed. by Manuel V. Hermenegildo and Jens Palsberg.
ACM, 2010, pp. 327–338. doi: 10.1145/1706299.1706338.

[108] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. “Synthesizing highly
expressive SQL queries from input-output examples”. In: Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2017, Barcelona, Spain, June 18-23, 2017. Ed. by Albert Cohen and
Martin T. Vechev. ACM, 2017, pp. 452–466. doi: 10.1145/3062341.3062365.

[109] Chenglong Wang et al. “Visualization by example”. In: Proc. ACM Program.
Lang. 4.POPL (2020), 49:1–49:28. doi: 10.1145/3371117.

[110] Xinyu Wang, Isil Dillig, and Rishabh Singh. “Program Synthesis Using Ab-
straction Refinement”. In: Proc. ACM Program. Lang. 2.POPL (2017). doi:
10.1145/3158151.

[111] Yuepeng Wang et al. “Synthesizing database programs for schema refactoring”.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. 2019, pp. 286–300. doi: 10.1145/3314221.
3314588.

145

https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/1706299.1706338
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3314221.3314588
https://doi.org/10.1145/3314221.3314588

	Acknowledgements
	Table of contents
	Introduction
	Synthesis of Effectful Programs
	Synthesizing Privacy Preserving Queries
	Generalized program search with abstract interpretation

	RbSyn: Type- and Effect-Guided Program Synthesis
	Introduction
	Overview
	Synthesizing Spec Solutions
	Merging Solutions

	Formalism
	Type-Guided Synthesis
	Effect-Guided Synthesis
	Merging Solutions
	Discussion

	Implementation
	Evaluation
	Benchmarks
	Synthesis Correctness and Performance
	Performance of Type- and Effect-Guidance
	Effect Annotation Precision vs. Performance

	Related Work
	Conclusion

	Anosy: Approximated Knowledge Synthesis with Refinement Types for Declassification
	Introduction
	Overview
	Motivation: Bounded Downgrades
	Approximating knowledge from queries
	Verification and Correct-by-Construction Synthesis of Knowledge

	Bounded Downgrade
	Refinement Types Encoding
	Abstract Domains
	Approximations of ind. sets and knowledge
	The Interval Abstract Domain
	The Powersets of Intervals Abstract Domain

	Synthesis of Optimal Domains
	The query language
	Synthesis Sketch
	Synth: SMT-based Synthesis of Intervals
	IterSynth: Iterative Synthesis of PowerSets

	Evaluation
	Verification & Synthesis of ind. sets
	Secure Advertising System

	Related Work
	Conclusion & Further Applications

	Absynthe: Abstract Interpretation-Guided Synthesis
	Introduction
	Overview
	Formalism
	Abstract Transformer Function DSL
	Abstraction-Guided Synthesis

	Implementation
	Evaluation
	SyGuS Strings
	AutoPandas

	Related Work
	Conclusion

	Conclusion and Future Work
	Future Work

	RbSyn: Complete Evaluation and Synthesis Rules
	Evaluation Rules
	Type-Guided Synthesis
	Algorithm
	Branch pruning rules

	Bibliography

