
Type-Level Computations for Ruby Libraries

Milod Kazerounian
University of Maryland

College Park, Maryland, USA
milod@cs.umd.edu

Sankha Narayan Guria
University of Maryland

College Park, Maryland, USA
sankha@cs.umd.edu

Niki Vazou
IMDEA Software Institute

Madrid, Spain
niki.vazou@imdea.org

Jeffrey S. Foster
Tufts University

Medford, Massachusetts, USA
jfoster@cs.tufts.edu

David Van Horn
University of Maryland

College Park, Maryland, USA
dvanhorn@cs.umd.edu

Abstract

Many researchers have explored ways to bring static typing
to dynamic languages. However, to date, such systems are
not precise enough when types depend on values, which
often arises when using certain Ruby libraries. For example,
the type safety of a database query in Ruby on Rails depends
on the table and column names used in the query. To address
this issue, we introduce CompRDL, a type system for Ruby
that allows library method type signatures to include type-
level computations (or comp types for short). Combined with
singleton types for table and column names, comp types let
us give database query methods type signatures that com-
pute a table’s schema to yield very precise type information.
Comp types for hash, array, and string libraries can also in-
crease precision and thereby reduce the need for type casts.
We formalize CompRDL and prove its type system sound.
Rather than type check the bodies of library methods with
comp typesÐthose methods may include native code or be
complexÐCompRDL inserts run-time checks to ensure li-
brary methods abide by their computed types. We evaluated
CompRDL by writing annotations with type-level computa-
tions for several Ruby core libraries and database query APIs.
We then used those annotations to type check two popular
Ruby libraries and four Ruby on Rails web apps. We found
the annotations were relatively compact and could success-
fully type check 132 methods across our subject programs.
Moreover, the use of type-level computations allowed us
to check more expressive properties, with fewer manually

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314630

inserted casts, than was possible without type-level com-
putations. In the process, we found two type errors and a
documentation error that were confirmed by the developers.
Thus, we believe CompRDL is an important step forward in
bringing precise static type checking to dynamic languages.

CCS Concepts · Theory of computation → Program

analysis.

Keywords type-level computations, dynamic languages,
types, Ruby, libraries, database queries

ACM Reference Format:

Milod Kazerounian, Sankha Narayan Guria, Niki Vazou, Jeffrey S.

Foster, and David Van Horn. 2019. Type-Level Computations for

Ruby Libraries. In Proceedings of the 40th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI ’19),

June 22ś26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3314221.3314630

1 Introduction

There is a large body of research on adding static typing
to dynamic languages [2ś4, 21, 29, 37, 38, 43ś45]. However,
existing systems have limited support for the case when
types depend on values. Yet this case occurs surprisingly
often, especially in Ruby libraries. For example, consider the
following database query, written for a hypothetical Ruby
on Rails (a web framework, called Rails henceforth) app:

Person.joins (:apartments).where ({ name: ' Alice ' , age: 30 ,

apartments: {bedrooms: 2}})

This query uses the ActiveRecord DSL to join two database
tables, people1 and apartments, and then filter on the values
of various columns (name, age, bedrooms) in the result.
We would like to type check such code, e.g., to ensure

the columns exist and the values being matched are of the
right types. But we face an important problem: what type
signature do we give joins? Its return typeÐwhich should
describe the joined tableÐdepends on the value of its argu-
ment. Moreover, for n tables, there are n2 ways to join two
of them, n3 ways to join three of them, etc. Enumerating all
these combinations is impractical.

1Rails knows the plural of person is people.

966

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3314221.3314630
https://doi.org/10.1145/3314221.3314630

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Kazerounian, S.N. Guria, N. Vazou, J.S. Foster, D. Van Horn

To address this problem, in this paper we introduce Comp-
RDL, which extends RDL [18], a Ruby type system, to include
method types with type-level computations, henceforth re-
ferred to as comp types. More specifically, in CompRDL we
can annotate library methods with type signatures in which
Ruby expressions can appear as types. During type check-
ing, those expressions are evaluated to produce the actual
type signature, and then typing proceeds as usual. For ex-
ample, for the call to Person.joins, by using a singleton type
for :apartments, a type-level computation can look up the
database schemas for the receiver and argument and then
construct an appropriate return type.2

Moreover, the same type signature can work for any com-
bination of tables. And, because CompRDL allows arbitrary
computation in types, CompRDL type signatures have ac-
cess to the full, highly dynamic Ruby environment. This
allows us to provide very precise types for the large set of
Rails database query methods. It also lets us give precise
types to methods of finite hash types (heterogeneous hashes),
tuple types (heterogeneous arrays), and const string types

(immutable strings), which can help eliminate type casts that
would otherwise be required.

Note that in all these cases, we apply comp types to library
methods whose bodies we do not type check, in part to avoid
complex, potentially undecidable reasoning about whether
a method body matches a comp type, but more practically
because those library methods are either implemented in
native code (hashes, arrays, strings) or are complex (database
queries). This design choice makes CompRDL a particularly
practical system which we can apply to real-world programs.
To maintain soundness, we insert dynamic checks to ensure
that these methods abide by their computed types at runtime.
(ğ 2 gives an overview of typing in CompRDL.)

We introduce λC , a core, object-oriented language that for-
malizes CompRDL type checking. In λC , library methods can
be declared with signatures of the form (a<:e1/A1) → e2/A2,
where A1 and A2 are the conventional (likely overapproxi-
mate) argument and return types of the method. The precise
argument and return types are determined by evaluating
e1 and e2, respectively, and that evaluation may refer to the
type of the receiver and the type a of the argument. λC also
performs type checking on e1 and e2, to ensure they do not go
wrong. To avoid potential infinite recursion, λC does not use
type-level computations during this type checking process,
instead using the conventional types for library methods. Fi-
nally, λC includes a rewriting step to insert dynamic checks
to ensure library methods abide by their computed types. We
prove λC ’s type system is sound. (See ğ 3 for our formalism.)
We implemented CompRDL on top of RDL, an existing

Ruby type checker. Since CompRDL can include type-level

2The use of type-level computations and singleton types could be considered

dependent typing, but as our type system is much more restricted we

introduce new terminology to avoid confusion (see ğ 2.4 for discussion).

computation that relies on mutable values, CompRDL inserts
additional runtime checks to ensure such computations eval-
uate to the same result at method call time as they did at type
checking time. Additionally, CompRDL uses a lightweight
analysis to check that type-level computations (and thus type
checking) terminate. The termination analysis uses purity
effects to check that calls that invoke iterator methodsÐthe
main source of looping in Ruby, in our experienceÐdo not
mutate the receiver, which could introduce non-termination.
Finally, we found that several kinds of comp types we devel-
oped needed to include weak type updates to handle muta-
tion in Ruby programs. (ğ 4 describes our implementation in
more detail.)
We evaluated CompRDL by first using it to write type

annotations for 482 Ruby core library methods and 104 Rails
database query methods. We found that by using helper
methods, we could write very precise type annotations for
all 586 methods with just a few lines of code on average.
Then, we used those annotations to type check 132 methods
across two Ruby APIs and four Ruby on Rails web apps. We
were able to successfully type check all these methods in ap-
proximately 15 seconds total. In doing so, we also found two
type errors and a documentation error, which we confirmed
with the developers. We also found that, with comp types,
type checking these benchmarks required 4.75× fewer type
cast annotations compared to standard types, demonstrating
comp types’ increased precision. (ğ 5 contains the results of
our evaluation.)
Our results suggest that using type-level computations

provides a powerful, practical, and precise way to statically
type check code written in dynamic languages.

2 Overview

The starting point for our work is RDL [18], a system for
adding type checking and contracts to Ruby programs. RDL’s
type system is notable because type checking statically an-
alyzes source code, but it does so at runtime. For example,
line 6 in Figure 1a gives a type signature for the method
defined on the subsequent line. This łannotationž is actu-
ally a call to the method type,3 which stores the type signa-
ture in a global table. The type annotation includes a label
:model. (In Ruby, strings prefixed by colon are symbols, which
are interned strings.) When the program subsequently calls
RDL.do_typecheck :model (not shown), RDL will type check
the source code of all methods whose type annotations are
labeled :model.

This design enables RDL to support the metaprogramming
that is common in Ruby and ubiquitous in Rails. For exam-
ple, the programmer can perform type checking after meta-
programming code has run, when corresponding type defini-
tions are available. See Ren and Foster [37] for more details.
We note that while CompRDL benefits from this runtime

3In Ruby, parentheses in a method call are optional.

967

Type-Level Computations for Ruby Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

type checking approachÐwe use RDL’s representation of
types in our CompRDL signatures, and our subject programs
include Rails appsÐthere is nothing specific in the design of
comp types that relies on it, and one could implement comp
types in a fully static system.

2.1 Typing Ruby Database Queries

While RDL’s type system is powerful enough to type check
Rails apps in general, it is actually very imprecise when rea-
soning about database (DB) queries. For example, consider
the code in Figure 1a, which has been extracted and simpli-
fied from the Discourse app used in our experiments (ğ 5).
Among others, this app uses two tables, users and emails,
whose schemas are shown on lines 2 and 3. Each user has an
id, a username, and a flag indicating whether the account
was staged. Such staged accounts were created automatically
by Discourse and can be claimed by the email address owner.
An email has an id, the email address, and the user_id of the
user who owns the email address.

Next in the figure, we show code for the class User, which
is a model, i.e., instances of the class correspond to rows in
the users table. This class has one method, available?, which
returns a boolean indicatingwhether the username and email
address passed as arguments are available. The method first
checks whether the username was already reserved (line 8,
note the postfix if). If not, it uses the database query method
exists? to see if the username was already taken (line 9).
(Note that in Ruby, { a: b} is a hash that maps the symbol
:a , which is suffixed with a colon when used as a key, to the
value b.) Otherwise, line 11 uses a more complex query to
check whether an account was staged. More specifically, this
code joins the users and emails table and then looks for a
match across the joined tables.

We would like to type check the exists? calls in this code
to ensure they are type correct, meaning that the columns
they refer to exist and the values being matched are of the
right type. The call on line 9 is easy to check, as RDL can type
the receiver User as having an exists? method that takes a
particular finite hash type { c1: t1, ..., cn: tn} as an ar-
gument, where the ci are singleton types for symbols naming
the columns, and the ti are the corresponding column types.
Unfortunately, the exists? call on line 11 is another story.

Notice that this query calls exists? on the result of User.-
joins(:emails). Thus, to give exists? a type with the right
column information, we need to have that information re-
flected in the return type of joins. Unfortunately, there is no
reasonable way to do this in RDL, because the set of columns
in the table returned by joins depends on both the receiver
and the value of the argument. We could in theory overload
joins with different return types depending on the argument
typeÐe.g., we could say that User.joins returns a certain type
when the argument has singleton type :emails. However, we
would need to generate such signatures for every possible
way of joining two tables together, three tables together, etc.,

1 # Table Schema

2 # users: { id: Integer, username: String, staged: bool }

3 # emails: { id: Integer, email: String, user_id: Integer }

4

5 class User < ActiveRecord::Base

6 type "(String, String) → %bool", typecheck: :model

7 def self.available? (name, email)

8 return false if reserved? (name)

9 return true if !User.exists? ({ username: name})

10 # staged user accounts can be claimed

11 return User.joins (:emails) .exists? ({ staged: true,

username: name, emails: { email: email }})

12 end

13 end

(a) Discourse code (uses ActiveRecord).

1 type Table, :exists?, "(ńschema_type(tself)ż) → Bool"

2 type Table, :joins, "(t<:Symbol) →

3 ńif t.is_a? (Singleton)

4 then Generic.new(Table, schema_type(tself).merge(

{ t.val⇒schema_type(t)}))

5 else Nominal.new(Table)

6 end ż"

7

8 def schema_type(t)

9 if t.is_a? (Generic)∧ (t.base == Table) #Table<T>

10 return t.param # return T

11 elsif t.is_a? (Singleton) #Type of class or :symbol

12 table_name = t.val # get the class /symbol vale

13 table_type = RDL.db_schema[table_name]

14 return table_type.param

15 else # only reached for the nominal type Table

16 return ... # returns Hash<Symbol, Object>

17 end

18 end

(b) Comp type annotations for query methods.

Figure 1. Type Checking Database Queries in Discourse.

which quickly blows up. Thus, currently, RDL types this par-
ticular exists? call as taking a Hash<Symbol, Object>, which
would allow type-incorrect arguments.

Comp types forDBQueries. To address this problem, Comp-
RDL allows method type signatures to include computations
that can, on-the-fly, determine the method’s type. Figure 1b
gives comp type signatures for exists? and joins. It also shows
the definition of a helper method, schema_type, that is called
from the comp types. The comp types also make use of a new
generic type Table<T> to type a DB table whose columns are
described by T, which should be a finite hash type.
Line 1 gives the type of exists?. Its argument is a comp

type, which is a Ruby expression, delimited by ń·ż, that
evaluates to a standard type. When type checking a call to

968

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Kazerounian, S.N. Guria, N. Vazou, J.S. Foster, D. Van Horn

exists? (including those in the body of available?), CompRDL
runs the comp type code to yield a standard type, and then
proceeds with type checking as usual with that type.
In this case, to compute the argument type for exists?,

we call the helper method schema_type with tself, which
is a reserved variable naming the type of the receiver. The
schema_type method has a few different behaviors depend-
ing on its argument. When given a type Table<T>, it returns
T, i.e., the finite hash type describing the columns. When
given a singleton type representing a class or a symbol, it uses
another helper method RDL.db_schema (not shown) to look
up the corresponding table’s schema and return an appro-
priate finite hash type. Given any other type, schema_type

falls back to returning the type Hash<Symbol, Object>.
This type signature already allows us to type check the

exists? call on line 9. On this line, the receiver has the sin-
gleton type for the User class, so schema_type will use the
second arm of the conditional and look up the schema for
User in the DB.
Line 2 shows the comp type signature for joins. The sig-

nature’s input type binds t to the actual argument type, and
requires it to be a subtype of Symbol. For example, for the
call on line 11, t will be bound to the singleton type for
:emails. The return comp type can then refer to t. Here, if
t is a singleton type, joins returns a new Table type that
merges the schemas of the receiver and the argument tables
using schema_type. Otherwise, it falls back to producing a
Table with no schema information. Thus, the joins call on
line 11 returns type

Table<{staged:%bool, username:String, id: Integer,

emails: {email:String, user_id: Integer }}>

That is, the type reflects the schemas of both the users

and emails tables. Given this type, we can now type check
the exists? call on line 11 precisely. On this line, the receiver
has the table type given above, so when called by exists? the
helper schema_type will use the first arm of the conditional
and return the Table column types, ensuring the query is
type checked precisely.

Though we have only shown types for two query methods
in the figure, we note that comp types are easily extensible
to other kinds of queries. Indeed, we have applied them to
104 methods across two DB query frameworks (ğ 5). Further-
more, we can also use comp types to encode sophisticated
invariants. For example, in Rails, database tables can only be
joined if the corresponding classes have a declared associa-

tion. We can write a comp type for joins that enforces this.
(We omitted this in Figure 1 for brevity.)

Finally, we note that while we include a łfallbackž case
that allows comp types to default to less precise types when
necessary, in practice this is rarely necessary for DB queries.
That is, parameters that are important for type checking,
such as the name of tables being queried or joined, or the

1 type Hash, :[], "(k) → v"

2 type Array, :first, "() → a"

3 type :page, "()→{ info: Array<String>, title: String }''

4

5 type "() → String "

6 def image_url ()

7 page[:info].first # can ' t type check

8 # Fix: RDL.type_cast (page[:info], "Array< String >") .first

9 end

Figure 2. Type Casts in a Method.

names of columns be queried, are almost always provided
statically in the code.

2.2 Avoiding Casts using Comp Types

In addition to letting us find type errors in code we could
not previously type check precisely enough, the increased
precision of comp types can also help eliminate type casts.
For example, consider the code in Figure 2. The first line

gives the type signature for a method of Hash, which is
parameterized by a key type k and a value type v (declara-
tions of the parameters not shown). The specific method
is Hash#[],4 which, given a key, returns the corresponding
value. Notably, the form x[k] is desugared to x.[] (k), and
thus hash lookup, array index, and so forth are methods
rather than built-in language constructs.
The second line similarly gives a type for Array#first,

which returns the first element of the array. Here type vari-
able a is the array’s contents type (declaration also not
shown). The third line gives a type for a method page of
the current class, which takes no arguments and returns
a hash in which :info is mapped to an Array<String> and
:title is mapped to a String .
Now consider type checking the image_url method de-

fined at the bottom of the figure. This code is extracted and
simplified from a Wikipedia client library used in our exper-
iments (ğ 5). Here, since page is a no-argument method, it
can be invoked without any parentheses. We then invoke
Hash#[] on the result.

Unfortunately, at this point type checking loses precision.
The problem is that whenever a method is invoked on a
finite hash type { c1: t1, ..., cn: tn} , RDL (retroactively)
gives up tracking the type precisely and promotes it toHash<
Symbol, t1 or...or tn> [18]. In this case, page’s return type
is promoted to Hash<Symbol, Array<String> or String>.
Now the type checker gets stuck. It reasons that first

could be invoked on an array or a string, but first is defined
only for the former and not the latter. The only currently
available fix is to insert a type cast, as shown in the comment
on line 8.

4Here we use the Ruby idiom that A#m refers to the instance method m of

class A.

969

Type-Level Computations for Ruby Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

One possible solution would be to add special-case support
for [] on finite hash types. However, this is only one of
54 methods of Hash, which is a lot of behavior to special-
case. Moreover, Ruby programs can monkey patch any class,
including Hash, to change library methods’ behaviors. This
makes building special support for those methods inelegant
and potentially brittle since the programmer would have no
way to adjust the typing of those methods.

In CompRDL, we can solve this problem with a comp
type annotation. More specifically, we can give Hash#[] the
following type:

type Hash, :[], "(t<:Object) →

ńif tself.is_a? (FiniteHash) ∧ t.is_a? (Singleton)

then tself.elts[t.val]

else tself.value_type endż"

This comp type specifies that if the receiver has a finite hash
type and the key has a singleton type, then Hash#[] returns
the type of the value mapped to by the key, otherwise it
returns a value type covering all possible values (computed
by value_type, definition not shown).

Notice that this signature allows image_url to type check
without any additional casts. The same idea can be applied to
many other Hash methods to give them more precise types.

Tuple Types. In addition to finite hash types, RDL has a spe-
cial tuple type to model heterogeneous Arrays. As with finite
hash types, RDL does not special-case the Array methods
for tuples, since there are 124 of them. This leads to a loss of
precision when invoking methods on values with tuple types.
However, analogously to finite hash tables, comp types can
be used to recover precision. As examples, the Array#first
method can be given a comp type which returns the type of
the first element of a tuple, and the comp type for Array#[]
has essentially the same logic as Hash#[].

Const String Types. As another example, Ruby strings are
mutable, hence RDL does not give them singleton types. (In
contrast, Ruby symbols are immutable.) This is problematic,
because types might depend on string values. In particular,
in the next section we explore reasoning about string values
during type checking raw SQL queries.
In CompRDL, we assign singleton types to strings wher-

ever possible. We introduce a new const string type represent-
ing strings that are never mutated. CompRDL treats const
strings as singletons, and String methods are given comp
types that compute precise types using const strings and fall
back to the String type as needed. We discuss handling mu-
tation for const strings, finite hashes, and tuples in Section 4.

2.3 SQL Type Checking

As we saw in Figure 1, ActiveRecord uses a DSL that makes
it easier to construct queries inside of Ruby. However, some-
times programmers need to include raw SQL in their queries,

1 # Table Schema

2 # posts table { id: Integer, topic_id: Integer, ... }

3 # topics table { id: Integer, title: String, ... }

4 # topic_allowed_groups table { group_id: Integer,

topic_id: Integer }

5

6 # Query with SQL strings

7 Post.joins (:topic).where (' topics.title IN (SELECT

topic_id FROM topic_allowed_groups WHERE

group_id = ?) ' , self.id)

8

9 type Table, :where, "(t < : ń if t.is_a? (ConstString)

10 then sql_typecheck(tself, t)

11 else schema_type(tself)

12 end ż) → ń tself ż"

Figure 3. Type Checking SQL Strings in Discourse.

either to access a feature not supported by the DSL or to
improve performance compared to the DSL-generated query.

Figure 3 gives one such example, extracted and simplified
from Discourse. There are three relevant tables: posts, which
stores posted messages; topics , which stores the topics of
posts; and topic_allowed_groups, which is used to limit the
topics allowed by certain user groups.

Line 7 shows a query that includes raw SQL. First, we join
the posts and topics tables. Then where filters the joined
table based on some conditions. Here, the conditions involve
a nested SQL query, which can only be expressed using raw
SQL that will be inserted into the final generated query. This
example also shows another feature: any ?’s that appear in
raw SQL are replaced by additional arguments to where. In
this case, the ? will be replaced by self.id.
We would like to extend type checking to the raw SQL

strings in queries, since they may have errors. In this par-
ticular example, we have injected a bug. The inner SELECT
returns a set of integers, but topics.title is a string, and it
is a type error to search for a string in an integer set.
To find this bug, we developed a simple type checker for

a subset of SQL, and we wrote a comp type for where that
invokes it as shown on line 9. In particular, if the type of
the argument to where, here referred to by t, is a const
string, then we type check that string as raw SQL, and oth-
erwise we compute the valid parameters of where using the
schema_typemethod from Figure 1. The result of where has
the same type as the receiver.

The sql_typecheckmethod (not shown) takes the receiver
type, which will be a Table<T> type, and the SQL string. One
challenge that arises in type checking the SQL string is that
it is actually only a fragment of a query, which therefore
cannot be directly parsed using a standard SQL parser. We
solve this problem by creating a complete, but artificial, SQL
query into which we inject the fragment. This query is never

970

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Kazerounian, S.N. Guria, N. Vazou, J.S. Foster, D. Van Horn

run, but it is syntactically correct so it can be parsed. Then,
we replace any ?’s with placeholder AST nodes that store
the types of the corresponding arguments.
For example, the raw SQL in Figure 3 gets translated to

the following SQL query:

SELECT ∗ FROM posts INNER JOIN topics

ON a.id = b.a_id

WHERE topics.title IN (SELECT topic_id FROM

topic_allowed_groups WHERE group_id = [Integer])

Notice the table names (posts, topics) occur on the first line
and the ? has been replaced by a placeholder indicating the
type Integer of the argument. Also note that the column
names to join on (which are arbitrary here) are ignored by
our type checker, which currently only looks for errors in
the where clause.
Once we have a query that can be parsed, we can type

check it using the DB schema. In this case, the type mismatch
between topics.title and the inner query will be reported.
In ğ 2.1, comp types were evaluated to produce a normal

type signature. However, we use comp types in a slightly
different way for checking SQL strings. The sql_typecheck
method will itself perform type checking and provide a
detailed message when an error is found. If no error is found,
sql_typecheck will simply return the type String, allowing
type checking to proceed.

2.4 Discussion

Now that we have seen CompRDL in some detail, we can
discuss several parts of its design.

Dynamic Checks. In type systems with type-level computa-
tions, or more generally dependent type systems, comparing
two types for equality is often undecidable, since it requires
checking if computations are equivalent.
To avoid this problem, CompRDL only uses comp types

for methods which themselves are not type checked. For
example,Hash#[] is implemented in native code, andwe have
not attempted to type check ActiveRecord’s joins method,
which is part of a very complex system.

As a result, type checking in CompRDL is decidable. Comp
types are only used to type check method calls, meaning we
will always have access to the types of the receiver and
arguments in a method call. Additionally, in all cases we
have encountered in practice, the types of the receiver and
arguments are ground types (meaning they do not contain
type variables). Thus, comp types can be fully evaluated to
non-comp types before proceeding to type checking.
For soundness, since we do not type check the bodies of

comp type-annotated methods, CompRDL inserts dynamic
checks at calls to such methods to ensure they match their
computed types. For example, in Figure 2, CompRDL inserts
a check that page[:info] returns an Array<String>. This
follows the approach of gradual [40] and hybrid [17] typing,
in which dynamic checks guard statically unchecked code.

We should also note that although our focus is on applying
comp types to libraries, they can be applied to any method at
the cost of dynamic checks for that method rather than static
checks. For example, they could be applied to a user-defined
library wrapper.

Termination. A second issue for the decidability of comp
types is that type-level computations could potentially not
terminate. To avoid this possibility, we implement a termi-
nation checker for comp types. At a high level, CompRDL
ensures termination by checking that iterators used by type-
level code do not mutate their receivers and by forbidding
type-level code from using looping constructs. We also as-
sume there are no recursive method calls in type-level code.
We discuss termination checking in more detail in ğ 4.

Value Dependency. We note that, unlike dependent types
(e.g., Coq [35], Agda [33], F* [42]) where types depend di-
rectly on terms, in CompRDL types depend on the types of
terms. For instance, in a comp type (t<:Object) → tres the
result type tres can depend on the type t of the argument.
Yet, since singleton types lift expressions into types, we could
still use CompRDL to express some value dependencies in
types in the style of dependent typing.

Constant Folding. Finally, in RDL, integers and floats have
singleton types. Thus, we can use comp types to lift some
arithmetic computations to the type level. For example, Comp-
RDL can assign the expression 1+1 the type Singleton(2)

instead of Integer . This effectively incorporates constant
folding into the type checker.

While we did write such comp types for Integer and Float

(see Table 1), we found that this precision was not useful, at
least in our subject programs. The reason is that RDL only
assigns singleton types to constants, and typically arithmetic
methods are not applied to constant values. Thus, though we
have written comp types for the Integer and Float libraries,
we have yet to find a useful application for them in practice.
We leave further exploration of this topic to future work.

3 Soundness of Comp Types

In this section we formalize CompRDL as λC , a core object-
oriented calculus that includes comp types for library meth-
ods.We first define the syntax and semantics of λC (ğ 3.1), and
then we formalize type checking (ğ 3.2). The type checking
process includes a rewriting step to insert dynamic checks
that ensure library methods satisfy their type signatures.
Finally, we prove type soundness (ğ 3.3). For brevity, we
leave the full formalism and proofs to a companion technical
report [25]. Here we provide only the key details.

3.1 Syntax and Semantics

Figure 4 gives the syntax of λC . Values v include nil, true,
and false. To support comp types, class IDs A, which are
the base types in λ

C , are also values. We assume the set of

971

Type-Level Computations for Ruby Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Values v ::= nil | true | false | A

Expressions e ::= v | x | a | self | tself

| A.new | e; e | e == e

| if e then e else e | e .m(e)

| ⌈A⌉e .m(e)

Meth. Types σ ::= A → A

Lib. Meth. Types δ ::= σ | (a<:e/A) → e/A

Programs P ::= def A.m(x) : σ = e

| lib A.m(x) : δ | P ; P
Type Env. Γ ::= ∅ | x :A
Dyn. Env. E ::= ∅ | x :v
Class Table CT ::= ∅ | A.m:δ ,CT
Method Sets U : user-defined methods

L : library methods

x ,a ∈ var IDs,m ∈ method IDs, A ∈ class IDs, U ∩ L = ∅

Figure 4. Syntax and Relations of λC .

class IDs includes several built-in classes: Nil, the class of
nil; Obj, which is the root superclass; True and False, which
are the classes of true and false, respectively, as well as
their superclass Bool; and Type, the class of base types A.
Expressions e include values v and variables x and a. By

convention, we use the former in regular program expres-
sions and the latter in comp types. The special variable self
names the receiver of a method call, and the special variable
tself names the type of the receiver in a comp type. New
object instances are created with A.new. Expressions also
include sequences e; e , conditionals if e then e else e , and
method calls e .m(e), where, to simplify the formalism, meth-
ods take one argument. Finally, our type system translates
calls to library methods into checked method calls ⌈A⌉e .m(e),
which checks at run-time that the value returned from the
call has type A. We assume this form does not appear in the
surface syntax.

We assume the classes form a lattice withNil as the bottom
and Obj as the top. We write the least upper bound ofA1 and
A2 as A1 ⊔A2. For simplicity, we assume the lattice correctly
models the program’s classes, i.e., if A ≤ A

′, then A is a
subclass ofA′ by the usual definition. Lastly, three of the built-
in classes, Nil, True, and False, are singleton types, i.e., they
contain only the values nil, true, and false, respectively.
Extending λC with support for more kinds of singleton types
is straightforward.
Method Types σ are of the form A

′ → A where A′ and A
are the domain and range types, respectively. Library Method

Types δ are either method types or have the form (a<:e ′/
A
′) → e/A, where e ′ and e are expressions that evaluate to

types and that can refer to the variables a and tself. The
base typesA′ andA provide an upper bound on the respective
expression types, i.e., for any a, expressions e ′ and e should
evaluate to subtypes of A′ and A, respectively. These upper
bounds are used for type checking comp types (ğ 3.2).

Finally, programs are sequences of method definitions and
library method declarations.

Dynamic Semantics. The dynamic semantics of λC are the
small-step semantics of Ren and Foster [37], modified to
throw blame (ğ 3.3) when a checked method call fails. They
use dynamic environments E, defined in Figure 4, which map
variables to values. We define the relation ⟨E, e⟩ ⇓ e

′, mean-
ing the expression e evaluates to e ′ under dynamic environ-
ment E. The full evaluation rules use a stack as well [25], but
we omit the stack here for simplicity.

Example. As an example comp type in the formalism, con-
sider type checking the expression true. ∧ (true), where
the ∧ method returns the logical conjunction of the receiver
and argument. Standard type checking would assign this
expression the type Bool. However, with comp types we can
do better.

Recall that true and false are members of the singleton
types True and False. Thus, we can write a comp type for
the ∧ method that yields a singleton return type when the
arguments are singletons, and Bool in the fallback case:

lib Bool. ∧ (x) : (a<:Bool/Bool) → (

if (tself == True). ∧ (a == True) then True

else if (tself == False). ∨ (a == False) then False

else Bool)/Bool

The first two lines of the condition handle the singleton cases,
and the last line is the fallback case.

3.2 Type Checking and Rewriting

Figure 5 gives a subset of the rules for type checking λ
C

expressions and rewriting them to insert dynamic checks at
library calls. The remaining rules are straightforward, and
can be found in the technical report [25]. The rules use two
additional definitions from Figure 4. Type environments Γ

map variables to base types, and the class table CT maps
methods to their type signatures. We omit the construction
of class tables, which is standard. We also use disjoint sets
U and L to refer to the user-defined and library methods,
respectively.
The rules in Figure 5 prove judgments of the form Γ ⊢CT

e ֒→ e
′ : A, meaning under type environment Γ and class

tableCT , source expression e is rewritten to target expression
e
′, which has type A.
Rule (C-Type) is straightforward: any class ID A that is

used as a value is rewritten to itself, and it has type Type. We
include this rule to emphasize that types are values in λ

C .
Rule (C-AppUD) finds the receiver type A, then looks up

A.m in the class table. This rule only applies when A.m is
user-defined and thus has a (standard) method typeA1 → A2.
Then, as is standard, the rule checks that the argument type
Ax is a subtype of A1. The type of the whole call is A2. This
rule rewrites the subexpressions e and ex , but it does not itself

972

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Kazerounian, S.N. Guria, N. Vazou, J.S. Foster, D. Van Horn

Type Checking and Rewriting Rules Γ ⊢CT e ֒→ e : A

Γ ⊢CT A ֒→ A : Type
C-Type

Γ ⊢CT e ֒→ e
′ : A CT(A.m) = A1 → A2 A.m ∈ U

Γ ⊢CT ex ֒→ e
′
x : Ax Ax ≤ A1

Γ ⊢CT e .m(ex) ֒→ e
′
.m(e ′x) : A2

C-AppUD

Γ ⊢CT e ֒→ e
′ : A

CT(A.m) = A1 → A2

A.m ∈ L Ax ≤ A1

Γ ⊢CT ex ֒→ e
′
x : Ax

Γ ⊢CT e .m(ex) ֒→ ⌈A2⌉e
′
.m(e ′x) : A2

C-AppLib

Γ ⊢CT e ֒→ e
′ : A CT(A.m) = (a<:et1/At1) → et2/At2

A.m ∈ L Γ ⊢CT ex ֒→ e
′
x : Ax

a:Type, tself:Type ⊢TCTU et1 ֒→ e
′
t1 : Type

⟨[a 7→ Ax][tself 7→ A], e ′
t1⟩ ⇓ A1 Ax ≤ A1

a:Type, tself:Type ⊢TCTU et2 ֒→ e
′
t2 : Type

⟨[a 7→ Ax][tself 7→ A], e ′
t2⟩ ⇓ A2

Γ ⊢CT e .m(ex) ֒→ ⌈A2⌉e
′
.m(e ′x) : A2

C-App-Comp

Figure 5. A subset of the type checking and rewriting rules for λC .

insert any checks, since user-defined methods are statically
checked against their type signatures (rule not shown).
Rule (C-AppLib) is similar to Rule (C-AppUD), except it

applies when the callee is a library method. In this case, the
rule inserts a check to ensure that, at run-time, the library
method abides by its specified type.

Rule (C-App-Comp) is the crux of λC ’s type checking sys-
tem. It applies at a call to a library method A.m that uses a
type-level computation, i.e., with a type signature (a<:et1/
At1) → et2/At2. The rule first type checks and rewrites
et1 and et2 to ensure they will evaluate to a type (i.e., have
type Type). These expressions may refer to a and tself,
which themselves have type Type. The rule then evaluates

the rewritten et1 and et2 using the dynamic semantics men-
tioned above to yield types A1 and A2, respectively. Finally,
the rule ensures that the argument ex has a subtype of A1;
sets the return type of the whole call to A2; and inserts a
dynamic check that ensures the call returns an A2 at run-
time. For instance, the earlier example of the use of logical
conjunction would be rewritten to ⌈True⌉true. ∧ (true).
There is one additional subtlety in Rule (C-App-Comp).

Recall the example above that gives a type to Bool.∧. Notice
that the type-level computation itself uses Bool.∧. This could
potentially lead to infinite recursion, where calling Bool.∧ re-
quires checking that Bool.∧ produces a type, which requires
recursively checking that Bool.∧ produces a type, etc.

To avoid this problem, we introduce a function TCTU that
rewrites class table CT to drop all annotations with type-
level expressions. More precisely, any comp type (a<:e1/
A1) → e2/A2 is rewritten to A1 → A2. Then type checking
type-level computations, in the fifth and eighth premise of
(C-App-Comp), is done under the rewritten class table.

Note that, while this prevents the type checking rules from
infinitely recursing, it does not prevent type-level expres-
sions from themselves diverging. In λ

C , we assume this does
not happen, but in our implementation, we include a simple
termination checker that is effective in practice (ğ 4).

3.3 Properties of λC .

Finally, we prove type soundness for λC . For brevity, we
provide only the high-level description of the proof. The
details can be found in the technical report [25].

Blame. The type system of λC does not prevent null-pointer
errors, i.e., nil has no methods yet we allow it to appear
wherever any other type of object is expected. We encode
such errors as blame. We also reduce to blame when a dy-
namic check of the form ⌈A′⌉A.m(v) fails.

Program Checking and CT. In the technical report [25]
we provide type checking rules not just for λC expressions
but also for programs P . These rules are where we actually
check user-defined methods against their types. We also
define a notion of validity for a class table CT with respect
to P , which enforces that CT ’s types for methods and fields
match the declared types in P , and that appropriate subtyping
relationships hold among subclasses. Given a well typed
program P , it is straightforward to construct a valid CT .

Type Checking Rules. In addition to the type checking and
rewriting rules of Figure 5, we define a separate judgment
Γ ⊢CT e : A that is identical to Γ ⊢CT e ֒→ e : A except it
omits the rewriting step, i.e., only performs type checking.

We can then prove soundness of the judgment Γ ⊢CT e : A
using preservation and progress, and finally prove soundness
of the type checking and rewriting rules as a corollary:

Theorem3.1 (Soundness). For any expressions e and e’, typeA,

class table CT, and program P such that CT is valid with re-

spect to P , if ∅ ⊢CT e ֒→ e
′ : A then e ′ either reduces to a value,

reduces to blame, or does not terminate.

4 Implementation

We implemented CompRDL as an extension to RDL, a type
checking system for Ruby [18, 37, 38, 41]. In total, CompRDL
comprises approximately 1,170 lines of code added to RDL.

973

Type-Level Computations for Ruby Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

RDL’s design made it straightforward to add comp types.
We extended RDL so that, when type checking method calls,
type-level computations are first type checked to ensure
they produce a value of type Type and then are executed to
produce concrete types, which are used in subsequent type
checking. Finally, these call sites are rewritten to include
dynamic checks that enforce the correctness of comp types.

Heap Mutation. For simplicity, λC does not include a heap.
By contrast, CompRDL allows arbitrary Ruby code to appear
in comp types. This allows great flexibility, but it means such
code might depend on mutable state that could change be-
tween type checking and the execution of a method call. For
example, in Figure 1, type-level code uses the global table
RDL.db_schema. If, after type checking the method avail-

able?, the program (pathologically) changed the schema of
User to drop the username column, then available? would
fail at runtime even though it had type checked. The dynamic
checks discussed in ğ 2 and ğ 3 are insufficient to catch this
issue, because they only check a method call against the
initial result of evaluating a comp type; they do not consider
that the same comp type might yield a new result at runtime.

To address this issue, CompRDL extends dynamic checks
to ensure types remain the same between type checking and
execution. If a method call is type checked using a comp type,
then prior to that call at runtime, CompRDL will reevaluate
that same comp type on the same inputs. If it evaluates to
a different type, CompRDL will raise an exception to signal
a potential type error. An alternative approach would be to
re-check the method under the new type.
Of course, the evaluation of a comp type may itself al-

ter mutable state. Currently, CompRDL assumes that comp
type specifications are correct, including any mutable com-
putations they may perform. If a comp type does have any
erroneous effects, program execution could fail in an un-
predictable manner. Other researchers have proposed safe-
guards for this issue of effectful contracts by using guarded
locations [15] or region based effect systems [39]. We leave
incorporating such safeguards for comp types as future work.
We note, however, that this issue did not arise in any comp
types we used in our experiments.

Termination of Comp Types. A standard property of type
checkers is that they terminate. However, because comp
types allow arbitrary Ruby code, CompRDL could potentially
lose this property. To address this issue, CompRDL includes
a lightweight termination checker for comp types.

Figure 6 illustrates the ideas behind termination checking.
In CompRDL, methods can be annotated with termination

effects : +, for methods that always terminate (e.g., m1 and
m2) and :− for methods that might diverge (e.g.,m3). Comp-
RDL allows terminating methods to call other terminating
methods (Line 9) but not potentially non-terminating meth-
ods (Line 10). Additionally, terminating methods may not

1 type :m1, ..., terminates: :+

2 type :m2, ..., terminates: :+

3 type :m3, ..., terminates: :−

4

5 type Array, :map, ..., terminates: :blockdep

6 type Array, :push, ..., pure: :−

7

8 def m1()

9 m2() # allowed: m2 terminates

10 m3() # not allowed: m3 may not terminate

11 while ... end # not allowed: looping

12

13 array = [1,2,3] # create new array

14 array.map { | val | val+1 } # allowed

15 array.map { | val | array.push (4) }

16 # not allowed: iterator calls impure method push

17 end

Figure 6. Termination Checking with CompRDL.

use loops (Line 11). We assume that type-level code is not
recursive, and leave checking for recursion to future work.

We believe it is reasonable to forbid the use of built-in loop
constructs and to assume no recursion, because in practice
most iteration in Ruby occurs via methods that iterate over
a structure. For instance, array.map {block } returns a new
array in which the block, a code block or lambda, has been
applied to each element of array. Since arrays are by defini-
tion finite, this call terminates as long as block terminates
and does not mutate the array. A similar argument holds
other iterators of Array, Hash, etc.
Thus, CompRDL checks termination of iterators as fol-

lows. Iterator methods can be annotated with the special
termination effect :blockdep (Line 5), indicating the method
terminates if its block terminates and is pure. CompRDL also
includes purity effect annotations indicating whether meth-
ods are pure (: +) or impure (:−). A pure method may not
write to any instance variable, class variable, or global vari-
able, or call an impure method. CompRDL determines that a
:blockdep method terminates as long as its block argument
is pure, and otherwise it may diverge. Using this approach,
CompRDL will allow Line 14 but reject reject Line 15.

Type Mutations and Weak Updates Finally, to handle
aliasing, our type annotations for Array, Hash, and String

need to perform weak updates to type information when
tuple, finite hash, and const string types, respectively, are
mutated. For example, consider the following code:

a = [1, ' foo '] ; if...then b = a else...end ; a[0] ='one '

Here (ignoring singleton types for simplicity), a initially has
the type t = [Integer, String] , where t is a Ruby object,
specifically an instance of RDL’s TupleType class. At the join
point after the conditional, the type of b will be a union of t
and its previous type.

974

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Kazerounian, S.N. Guria, N. Vazou, J.S. Foster, D. Van Horn

Table 1. Library methods with comp type definitions.

Library
Comp Type

Definitions

Ruby

LoC

Helper

Methods

Ruby Core Library

Array 114 215 15

Hash 48 247 15

String 114 178 12

Float* 98 12 1

Integer* 108 12 1

Database DSL

ActiveRecord 77 375 18

Sequel 27 408 22

Total 586 1447 83
∗Helper methods for Float and Integer are shared.

We could potentially forbid the assignment to a[0] be-
cause the right-hand side does not have the type Integer .
However, this is likely too restrictive in practice. Instead, we
would like to mutate t after the write. However, b shares this
type. Thus we perform a weak update: after the assignment
we mutate t to be [Integer∪String, String] , to handle the
cases when a may or may not have been assigned to b.
For soundness, we need to retroactively assume t was

always this type. Fortunately, for all tuple, finite hash, and
const string types τ , RDL already records all asserted con-
straints τ ′ ≤ τ and τ ≤ τ

′ to support promotion of tuples,
finite hashes, and const strings to types Array, Hash, and
String , respectively [18]. We use this same mechanism to
replay previous constraints on these types whenever they
are mutated. For example, if previously we had a constraint
α ≤ [Integer , String], and subsequently we mutated the
latter type to [Integer∪String , String], we would łreplayž
the original constraint as α ≤ [Integer ∪ String , String].

5 Experiments

We evaluated CompRDL by writing comp type annotations
for a number of Ruby core and third party libraries (ğ 5.1)
and using these types to type check real-world Ruby appli-
cations (ğ 5.2). We discuss the results of type checking these
benchmarks, including the type errors we found in the pro-
cess (ğ 5.3). In all, we wrote 586 comp type annotations for
Ruby library methods, used them to type check 132 methods
across six Ruby apps, found three bugs in the process, and
used significantly fewer manually inserted type casts than
are needed using RDL.

5.1 Library Types

Table 1 details the library type annotations we wrote. We
chose to define comp types for these libraries due to their
popularity and because, as discussed in ğ 2, they are amenable
to precise typing with comp types. We wrote types based
on the libraries’ documentation as well as manual testing to
ensure comp types matched associated method semantics.

• Ruby core libraries: These are libraries that are written
in C and automatically loaded in all Ruby programs.
We annotate the methods from the Array,Hash, String,
Integer, and Float classes.

• ActiveRecord: ActiveRecord is the most used object-
relational model (ORM) DSL of the Ruby on Rails web
framework. We wrote comp types for ActiveRecord
database query methods.

• Sequel: Sequel is an alternative database ORM DSL. It
offers some more expressive queries than are available
in ActiveRecord.

Table 1 lists the number of methods for which we defined
comp types in each library and the number of Ruby lines of
code (LoC) implementing the type computation logic. The
LoC count was calculated with sloccount [47] and does not
include the line of the type annotation itself.

In developing comp types for these libraries, we discovered
that many methods have the same type checking logic. This
helped us write comp types for entire libraries using a few
common helper methods, e.g., schema_type in ğ 2.1. In total,
we wrote comp type annotations for 586 methods across
these libraries, comprising 1447 lines of type-level code and
using 83 helper methods. These comp types can be used to
type check as many of the libraries’ clients as we would like,
making the effort of writing them very rewarding.

5.2 Benchmarks

We evaluated CompRDL by type checking methods from
two popular Ruby libraries and four Rails web apps:

• Wikipedia Client [14] is a Ruby wrapper library for the
Wikipedia API.

• Twitter Gem [32] is a Ruby wrapper library for the
Twitter API.

• Discourse [23] is an open-source discussion platform
built on Rails. It uses ActiveRecord.

• Huginn [22] is a Rails app for setting up agents that
monitor the web for events and perform automated
tasks in response. It uses ActiveRecord.

• Code.org [12] is a Ruby app that powers code.org, a site
that encourages people, particularly students, to learn
programming. It uses a combination of ActiveRecord
and Sequel.

• Journey [6] is a Rails app that provides a graphical
interface to create surveys and collect responses from
participants. It uses a combination of ActiveRecord
and Sequel.

We selected these benchmarks because they are popular,
well-maintained, and make extensive use of the libraries
noted in ğ 5.1. More specifically, the APIs often work with
hashes representing JSON objects received over HTTP, and
the Rails apps rely heavily on database queries.

Since CompRDL performs type checking, we must provide
a type annotation for any method we wish to type check. Our

975

code.org

Type-Level Computations for Ruby Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Table 2. Type checking results.

Program Meths LoC
Extra

Annots.
Casts

Casts

(RDL)

Time (s)

Median ± SIQR

Test Time

No Chk (s)

Test Time

w/Chk. (s)
Errs

API client libraries

Wikipedia 16 47 3 1 13 0.06 ± 0.00 6.3 ± 0.13 6.32 ± 0.11 0

Twitter 3 29 11 3 8 0.02 ± 0.00 0.07 ± 0.00 0.08 ± 0.00 0

Rails Applications

Discourse 36 261 32 13 22 7.77 ± 0.39 80.24 ± 0.63 81.04 ± 0.34 0

Huginn 7 54 6 3 6 2.46 ± 0.29 4.30 ± 0.21 4.59 ± 0.48 0

Code.org 49 530 53 3 68 0.49 ± 0.01 2.49 ± 0.13 2.74 ± 0.02 1

Journey 21 419 78 14 59 4.12 ± 0.08 4.52 ± 0.22 4.76 ± 0.24 2

Total 132 1340 183 37 176 14.93 ± 0.77 97.93 ± 1.31 99.53 ± 1.20 3

subject programs are very large, and hence annotating all of
the programs’ methods is infeasible. Instead, we focused on
methods for which comp types would be most useful.
InWikipedia, we annotated the entire Page API. To sim-

plify type checking slightly, we changed the code to replace
string hash keys with symbols, since RDL’s finite hash types
do not currently support string keys. In Twitter, we anno-
tated all the methods of stream API bindings that made use
of methods with comp types.
In Discourse and Huginn, we chose several larger Rails

model classes, such as a User class that represents database
rows storing user information. In Code.org and Journey, we
type checked all methods that used Sequel to query the data-
base. Within the selected classes for these four Rails apps,
we annotated a subset of the methods that query the data-
base using features that CompRDL supports. The features
CompRDL does not currently support include the use of Rails
scopes, which are essentially macros for queries, and the use
of SQL strings for methods other than where.

Finally, because CompRDL performs type checking at run-
time (see ğ 2.1), we must first load each benchmark before
type checking it. We ran the type checker immediately after
loading a program and its associated type annotations.

5.3 Results

Table 2 summarizes our type checking results. In the first
group of columns, we list the number of type checked meth-
ods and the total lines of code (computed with sloccount)
of these methods. The third column lists the number of ad-
ditional annotations we wrote for any global and instance
variables referenced in the method, as well as any methods
called that were not themselves selected for type checking.
The last column in this group lists the number of type casts
we added. Many of these type casts were to the result of
JSON.parse, which returns a nested Hash/Array data struc-
ture depending on its string input. Most of the remaining
casts are to refine types after a conditional test; it may be pos-
sible to remove these casts by adding support for occurrence
typing [27].

Increased Type Checking Precision. Recall from ğ 2.2 that
comp types can potentially reduce the need for programmer-
inserted type casts. The next column reports howmany casts
were needed using normal RDL (i.e., no comp types). As
shown, approximately 4.75× fewer casts were needed when
using comp types. This reflects the significantly increased
precision afforded by comp types, which greatly reduces the
programmer’s annotation burden.

Performance. The next group of columns report perfor-
mance. First we give the type checking time as the median
and semi-interquartile range (SIQR) of 11 runs on a 2017
MacBook Pro with a 2.3GHz i5 processor and 8GB RAM. In
total, we type checked 132 methods in approximately 15 sec-
onds, which we believe to be reasonable. Discourse took most
of the total time (8 out of 15 seconds). The reason turned out
to be a quirk of Discourse’s design: it creates a large number
of methods on-the-fly when certain constants are accessed.
Type checking accessed those constants, hence the method
creation was included in the type checking time.
The next two columns show the performance overhead

of the dynamic checks inserted by CompRDL. We selected a
subset of each app’s test suite that directly tested the type
checked methods, and ran these tests without (łNo Chkž)
and with (łw/Chkž) the dynamic checks. In aggregate (last
row), checks add about 1.6% overhead, which is minimal.

Errors Found. Finally, the last column lists the number of
errors found in each program. We were somewhat surprised
to find any errors in large, well-tested applications. We found
three errors. In Code.org, the current_user method was docu-
mented as returning a User. We wrote a matching type anno-
tation, and CompRDL found that the returned expressionÐ
whose typing involved a comp typeÐhas a hash type instead.
We notified the Code.org developers, and they acknowledged
that this was an error in the method documentation and
made a fix.
In Journey, CompRDL found two errors. First, it found

a method that referenced an undefined constant Field . We
notified the developers, who fixed the bug by changing the
constant to Question::Field . This bug had arisen due to

976

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Kazerounian, S.N. Guria, N. Vazou, J.S. Foster, D. Van Horn

namespace changes. Second, it found a method that included
a call with an argument { :action ⇒ prompt, ... } which is
a hash mapping key :action to prompt. The value prompt is
supposed to be a string or symbol, but as it has neither quotes
nor begins with a colon, it is actually a call to the prompt

method, which returns an array. The developers confirmed
this bug.

When type checking the aforementioned methods in RDL
(i.e., without comp types), two out of three of the bugs are
hidden by other type errors which are actually false positives.
These errors can be removed by adding four type casts, which
would then allow us to catch the true errors. With CompRDL,
however, we do not need any casts to find the errors.

6 Related Work

Types For Dynamic Languages. There is a large body of
research on adding static type systems to dynamic languages,
including Ruby [21, 37, 38], Racket [44, 45], JavaScript [3, 29,
43], and Python [2, 4]. To the best of our knowledge, this
research does not use type-level computations.
Dependent typing systems for dynamic languages have

been explored as well. Ou et al. [34] formally model type-
level computation along with effects for a dynamic language.
Other projects have sought to bring dependent types to exist-
ing dynamic languages, primarily in the form of refinement
types [20], which are base types that are refined with expres-
sive logical predicates. Refinement types have been applied
to Ruby [26], Racket [27], and JavaScript [11, 46]. In contrast
to CompRDL, these systems focus on type checking meth-
ods which themselves have dependent types. On the other
hand, CompRDL uses type-level computations only for non-
type checked library methods, allowing us to avoid checking
comp types for equality or subtyping (ğ 2.4). While sacrific-
ing some expressiveness, this makes CompRDL especially
practical for real-world programs.

Turnstile [8] is a metalanguage, hosted in Racket, for cre-
ating typed embedded languages. It lets an embedded DSL
author write their DSL’s type system using the host lan-
guage macro system. There is some similarity to CompRDL,
where comp types manipulate standard RDL types. However,
CompRDL types are not executed as macros (which do not
exist in Ruby), but rather in standard Ruby so they have full
access to the environment, e.g., so the joins type signature
can look up the DB schema.

Types For Database Queries. There have been a number
of prior efforts to check the type safety of database queries.
All of these target statically typed languages, an important
distinction from CompRDL.
Chlipala [10] presents Ur, a web-specific functional pro-

gramming language. Ur uses type-level computations over
record types [36] to type check programs that construct and
run SQL queries. Indeed, CompRDL similarly uses type-level
computations over finite hash types (analogous to record

types) to type check queries. To the best of our knowledge,
Ur focuses on computations over records. In contrast, Comp-
RDL supports arbitrary type-level computations targeting
unchecked library methods, making comp types more easily
extensible to checking new properties and new libraries. As
discussed in ğ 2, for example, comp types can not only com-
pute the schema of a joined table, but also check properties
like two joined tables having a declared Rails association.
Further, comp types can be usefully applied to many libraries
beyond database queries (ğ 5).
Similar to Ur, Baltopoulos et al. [5] makes use of record

types over embedded SQL tables. Using SMT-checked re-
finement types, they can statically verify expressive data in-
tegrity constraints, such as the uniqueness of primary keys
in a table and the validation of data inserted into a table.
In addition to the contrast we draw with Ur regarding ex-
tensibility of types, to the best of our knowledge, this work
does not include more intricate queries like joins, which are
supported in CompRDL.

New Languages for Database Queries. Domain-specific
languages have long been used towrite programswith correct-
by-construction, type safe queries. Leijen and Meijer [28]
implement Haskell/DB, an embedded DSL that dynamically
generates SQL in Haskell. Karakoidas et al. [24] introduce
J%, a Java extension for embedding DSLs into Java in an
extensible, type-safe, and syntax-checked way. Fowler and
Brady [19] use dependent types in the language Idris to en-
force safety protocols associated with common web program
features including database queries written in a DSL.
Language-integrated query is featured in languages like

LINQ [31] and Links [9, 13]. This approach allows program-
mers to write database queries directly within a statically-
typed, general purpose language.
In contrast to new DSLs and language-integrated query,

our focus in on bringing type safety to an existing language
and framework rather than developing a new one.

Dependent Types. Traditional dependent type systems are
exemplified by languages such as Coq [35], Agda [33], and
F* [42]. These languages provide powerful type systems that
allow programmers to prove expressive properties. However,
such expressive types may be too heavyweight for a dynamic
language like Ruby. As discussed in ğ 2.4, our work has fo-
cused on applying a limited form of dependent types, where
types depend on argument types and not arbitrary program
values, resulting in a system that is practical for real-world
Ruby programs.

Haskell allows for light dependent typing using the com-
bination of singleton types [16] and type families [7]. Comp-
RDL’s singleton types are similar to Haskell’s, i.e., both lift-
ing expressions to types, and comp types are analogous to
anonymous type families. However, unlike Haskell, Comp-
RDL supports runtime evaluation during type checking, and
thus does not require user-provided proofs.

977

Type-Level Computations for Ruby Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Scala supports path dependent types, a limited form of
type/term dependency in which types can depend on vari-
ables, but, as of Scala version 2, does not allow dependency
on general terms [1]. This allows for reasoning about data-
base queries. For example, the Scala library Slick [30], much
like our approach, allows users to write database queries in
a domain specific language (a lifted embedding) and uses
the query’s AST to type check the query using Scala’s path
dependent types. Unlike CompRDL, Scala’s path dependent
types do not allow the execution of the full host language
during type computations.

7 Conclusion

We presented CompRDL, a system for adding type signatures
with type-level computations, which we refer to as comp
types, to Ruby library methods. CompRDL makes it possi-
ble to write comp types for database queries, enabling us
to type check such queries precisely. Comp type signatures
can also be used for libraries over heterogeneous hashes
and arrays, and to treat strings as immutable when possi-
ble. The increased precision of comp types can reduce the
need for manually inserted type casts, thereby reducing the
programmer’s burden when type checking. Since comp type-
annotated method bodies are not themselves type checked,
CompRDL inserts run-time checks to ensure those methods
return their computed types. We formalized CompRDL as a
core language λC and proved its type system sound.
We implemented CompRDL on top of RDL, an existing

type system for Ruby. In addition to the features of λC , our
implementation includes run-time checks to ensure comp
types that depend on mutable state yield consistent types.
Our implementation also includes a termination checker
for type-level code, and the type signatures we developed
perform weak updates to type certain mutable methods.

Finally, we used CompRDL to write comp types for several
Ruby libraries and two database query DSLs. Using these
type signatures, we were able to type check six popular
Ruby apps and APIs, in the process discovering three errors
in our subject programs. We also found that type checking
with comp types required 4.75× fewer type casts, due to
the increased precision. Thus, we believe that CompRDL
represents a practical approach to precisely type checking
programs written in dynamic languages.

Acknowledgments

Thanks to the anonymous reviewers for their helpful com-
ments. This research was supported in part by NSF CCF-
1518844, CCF-1846350, DGE-1322106, and Comunidad de
Madrid as part of the program S2018/TCS-4339 (BLOQUES-
CM) co-funded by EIE Funds of the European Union.

References
[1] Nada Amin, Karl Samuel Grütter, Martin Odersky, Tiark Rompf, and

Sandro Stucki. 2016. The Essence of Dependent Object Types. Springer

International Publishing, Cham, 249ś272.

[2] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Mat-

sakis. 2007. RPython: A Step Towards Reconciling Dynamically and

Statically Typed OO Languages. In Proceedings of the 2007 Symposium

on Dynamic Languages (DLS). ACM, New York, NY, USA, 53ś64.

[3] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. 2005.

Towards Type Inference for Javascript. In ECOOP 2005 - Object-Oriented

Programming (ECOOP). Springer Berlin Heidelberg, Berlin, Heidelberg,

428ś452.

[4] John Aycock. 2000. Aggressive Type Inference. (2000).

[5] Ioannis G. Baltopoulos, Johannes Borgström, and Andrew D. Gor-

don. 2011. Maintaining Database Integrity with Refinement Types.

In ECOOP 2011 ś Object-Oriented Programming, Mira Mezini (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 484ś509.

[6] Nat Budin. 2018. Journey: An online questionnaire application. (2018).

https://github.com/nbudin/journey/.

[7] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and

SimonMarlow. 2005. Associated Types with Class. In Proceedings of the

32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’05). ACM, New York, NY, USA, 1ś13. https://doi.

org/10.1145/1040305.1040306

[8] Stephen Chang, Alex Knauth, and Ben Greenman. 2017. Type Systems

As Macros. In Proceedings of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages (POPL 2017). ACM, New York,

NY, USA, 694ś705. https://doi.org/10.1145/3009837.3009886

[9] James Cheney, Sam Lindley, Gabriel Radanne, and Philip Wadler. 2014.

Effective Quotation: Relating Approaches to Language-integrated

Query. In Proceedings of the ACM SIGPLAN 2014 Workshop on Par-

tial Evaluation and Program Manipulation (PEPM). ACM, New York,

NY, USA, 15ś26.

[10] Adam Chlipala. 2010. Ur: Statically-typed Metaprogramming with

Type-level Record Computation. In Proceedings of the 31st ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion (PLDI). ACM, New York, NY, USA, 122ś133.

[11] Ravi Chugh, David Herman, and Ranjit Jhala. 2012. Dependent Types

for JavaScript. In Proceedings of the ACM International Conference

on Object Oriented Programming Systems Languages and Applications

(OOPSLA). ACM, New York, NY, USA, 587ś606.

[12] Code.org. 2018. The code powering code.org and studio.code.org.

(2018). https://github.com/code-dot-org/code-dot-org.

[13] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006.

Links: Web Programming Without Tiers. In Proceedings of the 5th

International Conference on Formal Methods for Components and Objects

(FMCO). Springer-Verlag, Berlin, Heidelberg, 266ś296.

[14] David Cyril and Ken Pratt. 2018. Ruby client for the Wikipedia API.

(2018). https://github.com/kenpratt/wikipedia-client.

[15] Christos Dimoulas, Sam Tobin-Hochstadt, andMatthias Felleisen. 2012.

Complete Monitors for Behavioral Contracts. In Proceedings of the

21st European Conference on Programming Languages and Systems

(ESOP’12). Springer-Verlag, Berlin, Heidelberg, 214ś233. https://doi.

org/10.1007/978-3-642-28869-2_11

[16] Richard A. Eisenberg and StephanieWeirich. 2012. Dependently Typed

Programming with Singletons. In Proceedings of the 2012 Haskell Sym-

posium (Haskell ’12). ACM, New York, NY, USA, 117ś130. https:

//doi.org/10.1145/2364506.2364522

[17] Cormac Flanagan. 2006. Hybrid Type Checking. In Conference Record

of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL ’06). ACM, New York, NY, USA, 245ś256.

https://doi.org/10.1145/1111037.1111059

[18] Jeffrey Foster, Brianna Ren, Stephen Strickland, Alexander Yu, and

Milod Kazerounian. 2018. RDL: Types, type checking, and contracts

for Ruby. (2018). https://github.com/plum-umd/rdl.

[19] Simon Fowler and Edwin Brady. 2014. Dependent Types for Safe

and Secure Web Programming. In Implementation and Application of

978

https://github.com/nbudin/journey/
https://doi.org/10.1145/1040305.1040306
https://doi.org/10.1145/1040305.1040306
https://doi.org/10.1145/3009837.3009886
code.org
studio.code.org
https://github.com/code-dot-org/code-dot-org
https://github.com/kenpratt/wikipedia-client
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1145/2364506.2364522
https://doi.org/10.1145/2364506.2364522
https://doi.org/10.1145/1111037.1111059
https://github.com/plum-umd/rdl

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Kazerounian, S.N. Guria, N. Vazou, J.S. Foster, D. Van Horn

Functional Languages (IFL ’13). ACM, New York, NY, USA, 49:49ś49:60.

[20] Tim Freeman and Frank Pfenning. 1991. Refinement Types for ML.

SIGPLAN Not. 26, 6 (May 1991), 268ś277. https://doi.org/10.1145/

113446.113468

[21] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael

Hicks. 2009. Static Type Inference for Ruby. In Proceedings of the 2009

ACM Symposium on Applied Computing (SAC ’09). ACM, New York,

NY, USA, 1859ś1866.

[22] Huginn. 2018. Huginn: Create agents that monitor and act on your

behalf. (2018). https://github.com/huginn/huginn.

[23] Civilized Discourse Construction Kit Inc. 2018. Discourse: A platform

for community discussion. (2018). https://github.com/discourse/

discourse.

[24] Vassilios Karakoidas, Dimitris Mitropoulos, Panagiotis Louridas, and

Diomidis Spinellis. 2015. A Type-safe Embedding of SQL into Java

Using the Extensible Compiler Framework J%. Computer Languages,

Systems, and Structures 41, C (2015), 1ś20.

[25] Milod Kazerounian, Sankha Narayan Guria, Niki Vazou, Jeffrey S.

Foster, and David Van Horn. 2019. Type-Level Computations for Ruby

Libraries (Technical Report). (2019). arXiv:arXiv:1904.03521

[26] Milod Kazerounian, Niki Vazou, Austin Bourgerie, Jeffrey S. Foster, and

Emina Torlak. 2018. Refinement Types for Ruby. In Verification, Model

Checking, and Abstract Interpretation (VMCAI). Springer International

Publishing, Cham, 269ś290.

[27] Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. 2016. Oc-

currence Typing Modulo Theories. In Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI). ACM, New York, NY, USA, 296ś309.

[28] Daan Leijen and Erik Meijer. 1999. Domain Specific Embedded Com-

pilers. SIGPLAN Not. 35, 1 (Dec. 1999), 109ś122. https://doi.org/10.

1145/331963.331977

[29] Benjamin S. Lerner, Joe Gibbs Politz, Arjun Guha, and Shriram Krish-

namurthi. 2013. TeJaS: Retrofitting Type Systems for JavaScript. In

Proceedings of the 9th Symposium on Dynamic Languages (DLS). ACM,

New York, NY, USA, 1ś16.

[30] Lightbend, Inc. 2019. Slick. (2019). http://slick.lightbend.com/.

[31] Erik Meijer, Brian Beckman, and Gavin Bierman. 2006. LINQ: Reconcil-

ing Object, Relations and XML in the .NET Framework. In Proceedings

of the 2006 ACM SIGMOD International Conference on Management of

Data (SIGMOD). ACM, New York, NY, USA, 706ś706.

[32] ErikMichaels-Ober, JohnNunemaker,WynnNetherland, Steve Richert,

and Steve Agalloco. 2018. A Ruby interface to the Twitter API. (2018).

https://github.com/sferik/twitter.

[33] Ulf Norell. 2009. Dependently Typed Programming in Agda. Springer

Berlin Heidelberg, Berlin, Heidelberg, 230ś266.

[34] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. 2004.

Dynamic Typing with Dependent Types. In Exploring New Frontiers of

Theoretical Informatics, Jean-Jacques Levy, Ernst W. Mayr, and John C.

Mitchell (Eds.). Springer US, Boston, MA, 437ś450.

[35] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino,

Marco Gaboardi, Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg,

and Brent Yorgey. 2017. Software Foundations. Electronic textbook,

http://www.cis.upenn.edu/~bcpierce/sf.

[36] D. Rémy. 1989. Type Checking Records and Variants in a Natural

Extension of ML. In Proceedings of the 16th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’89). ACM,

New York, NY, USA, 77ś88. https://doi.org/10.1145/75277.75284

[37] Brianna M. Ren and Jeffrey S. Foster. 2016. Just-in-time Static Type

Checking for Dynamic Languages. In Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI). ACM, New York, NY, USA, 462ś476.

[38] Brianna M. Ren, John Toman, T. Stephen Strickland, and Jeffrey S.

Foster. 2013. The Ruby Type Checker. In Object-Oriented Program

Languages and Systems (OOPS) Track at ACM Symposium on Applied
Computing. ACM, Coimbra, Portugal, 1565ś1572.

[39] Taro Sekiyama and Atsushi Igarashi. 2017. Stateful Manifest Contracts.

SIGPLAN Not. 52, 1 (Jan. 2017), 530ś544. https://doi.org/10.1145/

3093333.3009875

[40] Jeremy Siek and Walid Taha. 2006. Gradual typing for functional lan-

guages. In Seventh Workshop on Scheme and Functional Programming.

ACM, Portland, OR, USA, 81ś92.

[41] T. Stephen Strickland, Brianna Ren, and Jeffrey S. Foster. 2014. Con-

tracts for Domain-Specific Languages in Ruby. In Dynamic Languages

Symposium (DLS). ACM, Portland, OR, 23ś34.

[42] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, An-

toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric

Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindo-

houe, and Santiago Zanella-Béguelin. 2016. Dependent Types and

Multi-monadic Effects in F*. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’16). ACM, New York, NY, USA, 256ś270.

[43] Peter Thiemann. 2005. Towards a Type System for Analyzing

JavaScript Programs. In Programming Languages and Systems. Springer

Berlin Heidelberg, Berlin, Heidelberg, 408ś422.

[44] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Mi-

gration: From Scripts to Programs. In Companion to the 21st ACM SIG-

PLAN Symposium on Object-oriented Programming Systems, Languages,

and Applications (OOPSLA). ACM, New York, NY, USA, 964ś974.

[45] Sam Tobin-Hochstadt andMatthias Felleisen. 2008. The Design and Im-

plementation of Typed Scheme. In Proceedings of the 35th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL). ACM, New York, NY, USA, 395ś406.

[46] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. 2016. Refine-

ment Types for TypeScript. In Proceedings of the 37th ACM SIGPLAN

Conference on Programming Language Design and Implementation

(PLDI). ACM, New York, NY, USA, 310ś325.

[47] D. A. Wheeler. 2018. SLOCCount. (2018). https://www.dwheeler.com/

sloccount/.

979

https://doi.org/10.1145/113446.113468
https://doi.org/10.1145/113446.113468
https://github.com/huginn/huginn
https://github.com/discourse/discourse
https://github.com/discourse/discourse
http://arxiv.org/abs/arXiv:1904.03521
https://doi.org/10.1145/331963.331977
https://doi.org/10.1145/331963.331977
http://slick.lightbend.com/
https://github.com/sferik/twitter
http://www.cis.upenn.edu/~bcpierce/sf
https://doi.org/10.1145/75277.75284
https://doi.org/10.1145/3093333.3009875
https://doi.org/10.1145/3093333.3009875
https://www.dwheeler.com/sloccount/
https://www.dwheeler.com/sloccount/

	Abstract
	1 Introduction
	2 Overview
	2.1 Typing Ruby Database Queries
	2.2 Avoiding Casts using Comp Types
	2.3 SQL Type Checking
	2.4 Discussion

	3 Soundness of Comp Types
	3.1 Syntax and Semantics
	3.2 Type Checking and Rewriting
	3.3 Properties of C.

	4 Implementation
	5 Experiments
	5.1 Library Types
	5.2 Benchmarks
	5.3 Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

