ABSYNTHE: Abstract Interpretation-Guided Synthesis

SANKHA NARAYAN GURIA, University of Maryland, USA
JEFFREY S. FOSTER, Tufts University, USA
DAVID VAN HORN, University of Maryland, USA

Synthesis tools have seen significant success in recent times. However, past approaches often require a
complete and accurate embedding of the source language in the logic of the underlying solver, an approach
difficult for industrial-grade languages. Other approaches couple the semantics of the source language with
purpose-built synthesizers, necessarily tying the synthesis engine to a particular language model. In this
paper, we propose ABSYNTHE, an alternative approach based on user-defined abstract semantics that aims
to be both lightweight and language agnostic, yet effective in guiding the search for programs. A synthesis
goal in ABSYNTHE is specified as an abstract specification in a lightweight user-defined abstract domain and
concrete test cases. The synthesis engine is parameterized by the abstract semantics and independent of
the source language. ABSYNTHE validates candidate programs against test cases using the actual concrete
language implementation to ensure correctness. We formalize the synthesis rules for ABsYNTHE and describe
how the key ideas are scaled-up in our implementation in Ruby. We evaluated ABsYNTHE on SyGusS strings
benchmark and found it competitive with other enumerative search solvers. Moreover, ABSYNTHE's ability to
combine abstract domains allows the user to move along a cost spectrum, i.e., expressive domains prune more
programs but require more time. Finally, to verify ABSYNTHE can act as a general purpose synthesis tool, we
use ABSYNTHE to synthesize Pandas data frame manipulating programs in Python using simple abstractions
like types and column labels of a data frame. ABSYNTHE reaches parity with AUTOPANDAS, a deep learning
based tool for the same benchmark suite. In summary, our results demonstrate ABSYNTHE is a promising step
forward towards a general-purpose approach to synthesis that may broaden the applicability of synthesis to
more full-featured languages.

CCS Concepts: » Software and its engineering — Automatic programming.
Additional Key Words and Phrases: program synthesis, abstract interpretation

ACM Reference Format:
Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. 2023. ABSYNTHE: Abstract Interpretation-Guided
Synthesis. Proc. ACM Program. Lang. 7, PLDI, Article 171 (June 2023), 24 pages. https://doi.org/10.1145/3591285

1 INTRODUCTION

In recent years, there has been a significant interest in automatically synthesizing programs
from high-level specifications, which often take the form of logical formulas [Feng et al. 2018],
type signatures [Polikarpova et al. 2016], or even input-output examples [Frankle et al. 2016].
Program synthesis has seen significant success in domains such as spreadsheets [Gulwani 2011],
compilers [Phothilimthana et al. 2019] or even database access programs [Guria et al. 2021]. Much
of the prior work, however, requires a complete and accurate embedding of the source language
in the logic of the underlying solver the synthesis tool uses. These often range from symbolic

Authors’ addresses: Sankha Narayan Guria, University of Maryland, College Park, Maryland, 20742, USA, sankha@cs.
umd.edu; Jeffrey S. Foster, Tufts University, Medford, Massachusetts, 20742, USA, jfoster@cs.tufts.edu; David Van Horn,
University of Maryland, College Park, Maryland, 20742, USA, dvanhorn@cs.umd.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART171

https://doi.org/10.1145/3591285

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3591285
https://doi.org/10.1145/3591285

171:2 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

execution [Torlak and Bodik 2014], counter-example guided synthesis [Solar-Lezama 2013], or
over-approximate semantics as predicates [Feng et al. 2017; Kim et al. 2021; Polikarpova et al.
2016] (often requiring termination measures and additional predicates for verifcation). This is
infeasible for many industrial-grade languages such as Ruby or Python. Other approaches are
strongly coupled with the semantics of the source language with purpose-built solvers [Reynolds
et al. 2015], but this necessarily ties the synthesis engine to the particular language model used.

In this paper, we propose ABSYNTHE, an alternative approach based on user-defined abstract
semantics that aims to be both lightweight and language agnostic. The abstract semantics are
lightweight to design, simplifying away inconsequential language details, yet effective in guiding
the search for programs. The synthesis engine is parameterized by the abstract semantics [Cousot
and Cousot 1977] and independent of the source language. In ABSYNTHE, users define a synthesis
problem via concrete test cases and an abstract specification in some user-defined abstract domain.
These abstract domains, and the semantics of the target language in terms of the abstract domains,
are written by the user in a DSL. Moreover, the user can define multiple simple domains, each
defining a partial semantics of the language, which they can combine together as a product domain
automatically. ABSYNTHE uses these abstract specifications to automatically guide the search for
the program using the abstract semantics. The key novelty of ABSYNTHE is that it separates the
search procedure from the definition of abstract domains, allowing the search to be guided by any
user-defined domain that fits the synthesis task. More specifically, the program search in ABSYNTHE
begins with a hole tagged with an abstract value representing the method’s expected return value.
At each step, ABSYNTHE substitutes this hole with expressions, potentially containing more holes,
until it builds a concrete expression without any holes. Each concrete expression generated is finally
tested in the reference interpreter to check if it passes all test cases. A program that passes all tests
is considered the solution. (§ 2 gives a complete example of ABSYNTHE’s synthesis strategies).

We formalize ABSYNTHE for a core language L and define an abstract interpreter for L in
terms of abstract transformer functions. Next, we describe a DSL L,,.;4 used to define these
abstract transformers. Notably, as ABSYNTHE synthesizes terms at each step, it creates holes tagged
as abstract variables x, i.e., holes which will be assigned a fixed abstract values later. We give
evaluation rules for these transformers written in L4, that additionally narrows these abstract
variables to sound range of abstract values. For example, given a specification that requests Pandas
programs that should evaluate to a data frame, a term (O : x;).query(O : X3) is a viable candidate
that queries a data frame. However, semantics of L,,;, help with constraining the bounds on x;
and X, such that these holes are substituted by values of a DataFrame and String respectively.
Finally, we present the synthesis rules used by ABSYNTHE to generate such terms. Specifically, we
discuss how ABSYNTHE specializes term generation based on the properties of the domain, such as
a finite domain enables enumeration through domain, or a domain that can be lifted to solvers can
use solver-backed operations, or domains expressed as computations not supported by dedicated
SMT solvers. (§ 3 discusses our formalism).

We implemented ABSYNTHE as a core library in Ruby, that provides the necessary supporting
classes to implement user-specific abstract domains and abstract interpretation semantics. It further
integrates automatic support for T and L values and abstract variables , as well as ProductDomain
to combine the individual domains point-wise. The ABsYNTHE implementation has interfaces to call
a concrete interpreter with a generated program to check if a program satisifies the input/output
examples. Finally, we also discuss some optimizations to scale ABSYNTHE for practical problems,
such as caching small terms and guessing partial programs based on testing predicates on the
input/output examples, and some limitations of the tool. (§ 4 discusses our implementation).

We evaluate ABSYNTHE as a general-purpose tool on a diverse set of synthesis problems while
being at par on performance with state-of-the-art tools. We first use ABSYNTHE to solve the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:3

id valueA id valueB

255 | 1141 0 255 1231 id | valueA | valueB
1191 1130 1 91 1170 0| 255 | 1141 1231

347 | 830 2 5247 | 954 1191 1130 1170

2| 347 | 830 870

.) : : : 51| 159 | 715 734
8| 22> 638 12| 211 | 575 8| 225|638 | 644
9 | 257 | 616 13 | 25 530

(d) Output data frame
(a) First data frame (arg0) (b) Second data frame (arg1)

1 def goal(arg@, argl, arg2):
2 return arg@.merge(argl, on=['id']).query(arg2)

'valueA # valueB'

—_

(e) Query string (arg?2)
(c) Synthesized program

Fig. 1. Data Frame Manipulation Example [Bavishi et al. 2019]. The synthesis goal is to produce (d) given
inputs (a), (b), and a query string (e). ABSYNTHE synthesizes the solution (c).

SyGusS strings benchmarks [Alur et al. 2017a] using simple domains such as string prefix, string
suffix, and string length to guide the search. Though ABsYNTHE operates with minimal semantic
information about SyGusS programs, it still performs similar to enumerative search solvers such
as EUPHONY [Alur et al. 2017b], solving most benchmarks in less than 7 seconds. SMT solvers
such as CVC4, or BLAZE that rely on precise abstractions perform much faster than ABSYNTHE, but
require large specification effort. We further evaluate the impact of our performance optimizations
and verify that ABSYNTHE’s synthesis cost adjusts with the expressiveness of the domain. More
specifically, the string prefix and suffix domains written in Ruby generate a concrete candidate
0.41ms average, whereas string length domain being a solver-aided domain takes around 16.93ms per
concrete candidate on average due to calls to Z3. Next, we use ABSYNTHE synthesize an unrelated
benchmark suite, for which it is harder to write precise formal semantics—Python programs
that use Pandas, a data frame manipulation library. We evaluate ABSYNTHE on the AUTOPANDAS
benchmarks [Bavishi et al. 2019], a suite of Pandas data frame manipulating programs in Python. The
AuTOoPANDAS tool trains deep neural network models to synthesize Pandas programs. ABSYNTHE is
at par with AuTOPANDAs, including a significant overlap in the benchmarks both tools can solve,
despite using simple semantics such types and column labels of a data frame while running on a
consumer Macbook Pro without specialized hardware requirements. (§ 5 discusses our evaluation).

In summary, we think ABSYNTHE represents an important step forward in the design of practical
synthesis tools that provide lightweight formal guarantees while ensuring correctness from tests.

2 OVERVIEW

In this section, we demonstrate ABSYNTHE by using it to synthesize data frame manipulation
programs in Python using the Pandas library [Reback et al. 2022]. In this example, we abstract data
frames as sets of column names, and use a lightweight type system for Pandas API methods to
effectively guide synthesis.

A data frame is a collection of data organized into rows and columns, similarly to a database
table. Data frame manipulation is a key task in data wrangling, a preliminary step for data science
or scientific computing tasks. For example, Figure 1 shows a data frame manipulation synthesis task
taken from the AuTOPANDAS benchmark suite [Bavishi et al. 2019]. The goal is to use the Python
Pandas library [Reback et al. 2022] to produce the data frame in Figure 1d, given the two input data

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

171:4 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

1 class ColNames < AbstractDomain 1 class ColNameInterp < AbsInterp
2 attr_reader :cols 2 def self.interpret(env, prog)
3 def initialize(cols) 3 # details omitted for brevity
4 @cols = cols.to_set 4 end
5 end 5
6 6 def self.pd_merge(left,right,opt)
7 def C(rhs) 7 left U right
8 rhs.cols.subset?(@cols) 8 end
9 end 9
10 10 def self.pd_query(df, pred)
11 def U(rhs) 11 df
12 ColNames.new(@cols U rhs.cols) 12 end
13 end end 13 end

(a) ColNames Domain (b) ColNames Abstract Semantics
1 class PyType < AbstractDomain 1 class PyTypelnterp < AbsInterp
2 attr_reader :ty 2 def self.pd_merge(left,right,opt)
3 3 DataFrame if left C DataFrame A
4 def initialize(ty) 4 right C DataFrame A
5 @ty = ty 5 opt € {on: Array<String>}
6 end 6 end
7 7
8 def C(rhs) 8 def self.pd_query(df, pred)
9 @ty < rhs.ty 9 DataFrame if df C DataFrame A
10 end 10 pred C String
11 end 11 end end

(c) PyType Domain (d) PyType Abstract Semantics

Fig. 2. Abstract domain definition for column names domain (a) and types domain definition (c). Abstract
semantics for the required methods are defined in (b) using ColNames domain and (d) using PyType domain.

frames in Figure 1a and 1b and a query string (Figure 1e). In this case, the output joins the input
rows with the same id but with different values in valueA and valueB columns. The Pandas library
provides a wide range of methods that perform complex data frame manipulation. For example,
calling left . merge(right, on: ['col']) joins the data frames left and right on column col. As
another example, calling df.query(str) returns a new data frame with the rows of df that satisfy
query string predicate str (as in Figure 1e).

To keep the synthesis task tractable, ABSYNTHE restricts its search to Python code consisting of
input variables arg0 through arg2; constants such as column names 'id "', 'valueA’, and 'valueB'
or row labels 0, 1, ..., 13 from the data frames; array literals and indexing; and dictionaries (for
keyword arguments). Additionally, for this discussion we will limit ABSYNTHE to the merge and
query methods just mentioned, even though our evaluation (§ 5.2) supports many more meth-
ods. Nonetheless, even with this restricted search space, naive enumeration of possible solutions
times out after 20 minutes. In contrast, using ABSYNTHE, we can guide the search using abstract
interpretation to find a solution in 0.47 seconds.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:5

Abstract Domains and Semantics. The first step in using ABSYNTHE is to identify appropriate
abstract domains for the abstract interpretation and implement the abstract semantics. Typically,
we develop the domain by looking at the input/output examples and thinking about the problem
domain. In our running example, we observe that the data frames use columns id, valueA, and
valueB, but each frame has a slightly different set of columns. This gives us the idea of introducing
a domain ColNames that abstracts data frames to a set of column labels.

Abstract values, drawn from an abstract domain, represent a set of concrete values in the program.
The abstract semantics define the evaluation rules of the program under values from this abstract
domain. This approach has seen considerable success in practical static analysis tools such as
ASTREE [Cousot et al. 2005] and Sparrow [Oh et al. 2012]. Figure 2a shows, similar to these
tools, the definition of the ColNames domain, which is a class whose instances are domain values.
ABSYNTHE is implemented in Ruby, and ABsYNTHE domains subclass AbstractDomain, which
provides foundational definitions such as T and L (see § 4). A value in the ColNames domain stores
the set of columns it represents in the instance variable @cols, which by line 2 can be read with an
accessor method cols. All abstract domains require a partial ordering relation C on the domain
that returns true if and only if the first columns label set (rhs. cols) is a subset of the second set
(@cols). Finally, the U method returns a new abstract value containing the union of the column
names of the two arguments. The U method is optional, however we define this as it will be used
in the abstract semantics.

After defining the abstract domain, next we need to define the abstract interpreter to give
semantics to the target language in our abstract domain. Figure 2b defines the abstract interpreter
for ColNames domain as ColNamelnterp class. All abstract interpreters are defined as a subclass
of Abslinterp class, provided by ABSYNTHE. It needs a definition of the interpret class method
(the preceding self. denotes it is a class method), that given an environment env, and a term
prog reduces it to a value of type ColNames. The interpret is a standard recursive interpreter,
so we omit the definition of interpret for brevity. Then we define the pd_merge and pd_query
class methods that define the operations for the Pandas merge and query methods on values
from ColNames domain. A call to left .merge(right, opt) in the source term under abstract
interpretation is computed via a call pd_merge(abs(left), abs(right), abs(opt)), where abs()
indicates the abstract values of the arguments. In the column name abstraction, we only need to
compute the column names of the resulting data frame, which is just the union of the column
names of the input data frame (line 7). Notice the opt argument can be ignored, as it impacts
how the data frames are merged in the concrete domain, but the set column names of the final
data frame is unaffected. Similarly, a call to df.query(pred) is abstractly evaluated via a call to
pd_query(abs(df), abs(pred)). Since the data frame returned by query has the same columns as
its input data frame, pd_query simple returns the abstract data frame df (line 11).

ABSYNTHE can also combine multiple domains together pointwise. We observe that the Pandas
API methods expect values of a specific type. Hence, we also introduce a PyType abstract domain
as a lightweight type system for Python. Figure 2c defines the abstract domain, which stores a
type in the @ty field as a type from RDL [Foster et al. 2020], a Ruby type system. We build on RDL
for representing Python types because it comes with built-in representations for nominal types,
generic types, etc. and a subtyping relation between them. The € method for PyType simply calls
the subtyping method < of RDL types. The subtyping method < is a special-case of the partial
ordering relation C.

Figure 2d defines gives the abstract semantics for merge and query in the PyType domain. The
method pd_merge checks that the types of left and right are subtypes of DataFrame, i.e., the type
that represents Pandas data frames as shown in Figure 1, and that opt is a dictionary with a key on
that admits an array of strings. If this check is satisfied, the return type is DataFrame. Otherwise,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

171:6 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

argd: {’id’, ‘valueA’} x DataFrame
argl: {’id’, ‘valueB’} x DataFrame
arg2: 1 x String
a X Type Error ret : Col x DataFrame
. ,
valueA X Type Error XCqumn Error
x Column Error arg@.merge(argd, on=0)
@ o.query(arg0) g0.merg g0,
areo .query(arg2)
o: Col x DataFrame g
a
o.merge((o: _ x DataFrame), o) — arg0.merge(argl, on=o)
— 0. _—
. o.query(o) o.query(arg2) .query(arg2) @ .query(arg2)
Col = {"id’, @
‘valueA’,
‘valueB’}
arg0.merge(argl, on=[‘id’]) arg0.merge(argl, on=[‘valueA’]) XTestFaiI
.query(arg2) / .query(arg2) @
/

Fig. 3. Steps in the synthesis of solution to the problem in Figure 1. Some choices available to the synthesis
algorithm has been omitted for simplicity.

pd_merge returns nil, which ABSYNTHE interprets as T, i.e., any value is possible. Note, in a type
checker, if the arguments do not match the expected types a type error occurs. Here, in contrast, we
are computing what would be a valid abstraction, and since we don’t have a specific type we can
assume T, i.e., anything can happen. Later, during synthesis the search procedure will appropriately
do the pruning by type-checking when it is provided a user specification. pd_query also checks if
the receiver is a subtype of DataFrame and the query string is a String. If so, it returns DataFrame,
otherwise it returns nil.

These domains are combined together using a ProductDomain class, provided by ABSYNTHE.
Here we write X to pair elements from the ColNames domain and the PyType domain. For example,
{"id", 'valueA'} x DataFrame denotes all data frames that have the columns 'id ' and 'valueA'.
The ProductDomain also comes with a Productinterp that evaluates product domain values with
respective individual semantics and combines these into a final product abstract value.

Synthesizing Solutions. An ABSYNTHE synthesis problem is specified by giving input/output
examples for the synthesized function. Synthesis begins by abstractly interpreting the input/output
examples to compute an abstract signature for the function. We have automated this for the
AuToPANDAS benchmark suite. The upper-right corner of Figure 3 gives the abstract signature for
out example. In particular, the first argument is a DataFrame with columns 'id ' and 'valueA’; the
second argument is a DataFrame with columns 'id' and 'valueB'; and the third argument is a
String and has no columns. The synthesized function should return a DataFrame that has columns
"id", "valueA', and 'valueB'. Additionally, ABSYNTHE also uses a set of constants that can be used
during the synthesis process. It constructs this from the rows and columns of the dataframes in the
input/output example: {'id ', 'valueA’', 'valueB',0,1,...,13}.

ABSYNTHE iteratively produces candidate function bodies that may contain holes O : a, where
each hole is labeled with the abstract value a its solution must abstractly evaluate to. Synthesis
begins (left side of figure) with candidate CO0, which is a hole labeled with the abstract return value
of the function. At each step, ABSYNTHE replaces a hole with an expression that satisfies its labels.
For example, candidate C1 is not actually generated because its concrete value 'valueA' is not of
type DataFrame. The process continues until the program has been full concretized, at which point
is it tested in the Python interpreter against the input/output examples. Synthesis terminates when
it finds a candidate that matches the input/output examples. For our running example, Figure 1c
shows the solution synthesized by ABSYNTHE.

The rest of the figure illustrates the search process. The candidate C2 does not satify the abstract
specification on columns, so it is also never generated. The candidate C3 instead expands the hole to

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:7

a call to query, which itself has holes for the receiver and argument. Note we omit the abstraction
labels here because ABsYNTHE has not fixed the abstract value for that hole yet. ABSYNTHE treats
these as abstract variables that can be used during abstract interpretation, but will be eventually
substituted with a fixed abstract value as the search proceeds (discussed in § 3).

After a single set of expansion of holes, ABSYNTHE runs the abstract interpreter on all candidates
(including the partial programs). Running C3 through the abstract interpreter calls the pd_query
function from PyTypelnterp (Figure 2d). From the evaluation of the pd_query ABSYNTHE can infer
the first hole has to be a subtype of DataFrame and the second hole should be a subtype of String.
Thus candidates like C4 will not be generated as it is ill-typed (arg0 is a DataFrame).

We use filling the remaining hole in C5 to illustrate another feature of ABSYNTHE, enumerating
finite abstract domains. ABsYNTHE has the upper bound of this hole at DataFrame, it will substitute
all possible values from PyType that are subtypes of DataFrame. Since there is only one type i.e.,
DataFrame, it synthesizes expressions of that type at the hole. For the next candidate C6, again by
running abstract interpreter bounds for O are determined. The _ in the O signifies that ColNames
domain still is an abstract variable, while the types have been concretized. ABSYNTHE can determine
bounds for variables only if the abstract transformers have conditionals (discussed in § 3.1), not
present in pd_merge of ColNamelnterp. Running the abstract interpreter eliminates candidate C7 as
the partial program will not satisfy the synthesis goal. Eliminating partial programs removes a family
of concrete programs, narrowing the search space further. ABSYNTHE next generates candidates C8
and C9. C8, however, is eliminated because the ColNames domain interpreter computes the final
data frame will have columns {'id ', 'valueA'}. Eventually, the keyword argument to the merge
method is filled with an array. Some ways of filling that argument fail the test cases (C10), but C11
passes all tests and is accepted as the solution (after being wrapped in a Python method defintion),
also shown in Figure 1c.

3 FORMALISM

In this section we formalize ABSYNTHE in a core language L. Figure 4a shows the L syntax.
Expressions in Lf have values v, drawn from a set of concrete values V; variables x; holes O : a
tagged with an abstraction a; and function application f'(e,...,e). Note that these are external
functions f, e.g., to call out to libraries. Programs in L consist of a single function definition
def m(x) = e of a function m that takes an argument x and returns the result of evaluating e.
Abstractions a include abstract values o drawn from an abstract domain A. We assume this
domain forms a complete lattice with greatest element T, least element L, and partial ordering
a; C a,. Abstractions also include abstract variables X, which ABSYNTHE uses to label holes
whose abstractions cannot immediately be determined. For example, if ABSYNTHE synthesizes
an application of a function f, it labels f’s arguments with abstract variables. During synthesis,
ABSYNTHE maintains bounds on such variables to narrow down the search space (see below). We
refer to abstract values from § 2 as abstractions in this section to avoid the ambiguity between
abstract variables and values. Concrete values are lifted to abstract values using the abstraction
function «, mapping concrete values to abstract values, i.e., @ maps V to A. Likewise, abstract values
map to a set of concrete values using the concretization function y, i.e., y maps A to the (V). We
write v € 0 as a shorthand for checking that v is in the concretization of 0. We assume that for
each function f, we have a corresponding abstract transfer function f* that soundly captures its
semantics. Finally, during synthesis, ABSYNTHE maintains two variable environments: I, binding
variables x to their abstractions, and A, binding abstract variables x to their bounds. Abstract
variable bounds are written as a tuple of the lower and upper bound respectively (details in § 3.1).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

171:8 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

Expressions e x= o | x| O:a] f(e...,e)
Programs P u:= defm(x)=e
Concrete Values v €V

Abstractions a == 0| %

Abstract Values 0 € A

Abstraction Function a VoA
Concretization Function Yy A-> V)
Inclusion veo if wvey(d)
Abstract Transfer Function o (AL...,A) > A
Abstract Environment ' == 0| x:a T
Bounds Environment A == 0] x:(aa), A

(a) Syntax and relations of L.

n(v) =a
— E-VaL — E-Var —— E-Hoie
IF'tola T'rx | T[x] F'ro:ala

F'tegllar ... Ttre,lan
Tt flen....en) | ff(ay,...,an)

(b) Abstract semantics for L.

E-Fun

Fig. 4. Syntax, relations, and abstract semantics of .Cf.

Abstract Semantics. Next, we define semantics to abstractly interpret candidate programs in
our domain. Figure 4b presents the relation I' + e || a that, given an abstract environment T,
evaluates an expression e to an abstract value a. E-VAL lifts a concrete value to the abstract domain
by applying the abstraction function. E-VAR lifts a variable to an abstract value by substituting
the value from the environment I'. E-HoLE abstractly evaluates a hole to its label. Finally, E-Fun
recursively evaluations a function application’s arguments and then applies the abstract transfer
function f*.

Synthesis Problem. We can now formally specify the synthesis problem: Given an abstract do-
main A, a set of abstract transformers f # and an abstract specification of the function’s input and
output a; — ay, synthesize a set of programs P such that NoHoLE(P), i.e., P has no holes in it, and
x:a1,0F P ay, ie., P abstractly evaluates to a, given that x has abstract value a;. Then, the final
solution is chosen as a synthesized candidate P that passes all input/output examples.

3.1 Abstract Transformer Function DSL

Figure 5a shows Lerq, the DSL to define abstract transformer functions f* for ABsYNTHE. The
primary purpose of the DSL is to let users define f* that can handle both abstract values a and
variables x correctly. It is expressive enough to write the abstract transformer function for domains
in § 2. Expressions € in L4 can be either such abstractions a, variables y, function application g(é)
and if-then-else statements. We consider g as uninterpreted abstract functions. The conditionals b
for if statements include top? that tests if an expression is T, bot? that tests if an expression is L,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:9

Expressions é == al|y| gl | if bthenéelseé
| ifécéthenéelseT | if g(é) thenéelse T
Conditionals b == top?é | bot?é | var?é | val?eé

Transfer Functions P def f*(y) = ¢

(a) Syntax of Lmetq-

Tr(Aé) | (Aa]

r[y] =a 'k <A15 é) 'U' <A25 Cl)
A-VAR A-Func
LH(Ay) (A a) I'+(A1,9(8)) I (A2 g(a))
T'kr <A1,b> U <A2, true)
'k <A2’ é1> 'U <A3’0> 'k <A> é> 'U (A; T)
A-IFT A-TorT
T'+ (A, if b then é; else é,) || (A3, v) I+ (A top?) | (A, true)

I'+ (A é1) I (Ag, %)
I'+(Az,é2) I (A3,0)

As[X] = (az,a3) a2, S0 Cas Ik (A ér) | Az %1)
A4 = A3[)2' = (az, 5)] T'r <A2,é2> U, <A3,JZ'2>
A-VC — A-VS
Tk <A1, él - é2> U, <A4, true) Tk <A1, él - é2> .U, <T(A3,X1,X2), true)
A[}’Zl [d ((,13,04)] l'fal Cas,aq C ay

A[)%l = ((13,(,12),5("2 (g (613, az)] lfa3 CaCay

ifa; € ay

where A[%1] = (a1, az), A[%2] = (a3, aq)

T(A,)‘El’ 32-2) =

(b) Selected Lnerq evaluation rules.

Fig. 5. Syntax and evaluation rules of Lpetq.

var? that tests if an expression is an abstract variable x, and val? that tests if an expression is a
abstract value a. Additionally, expressions é can test for ordering using C or can call an abstract
function g(é). The else branch of these conditionals evaluate to T, i.e., it evaluates to the largest
possible abstraction T if a test of ordering fails. This is done to soundly over-approximate program
behavior, while sacrificing precision. The abstract transformer is defined as a function f* that takes
the input abstract value as argument y and computes the output abstraction by evaluating the
expression é.

Figure 5b shows selected big-step evaluation rules for the abstract transformer functions written
in Lerq- Under an abstract environment I' and a bounds environment A, expression é evaluates to
a new bounds environment and a value v. In general these rules reflect standard big step semantics,
except for the C operation, where the bounds get constrained because of the comparison. The rule
A-IrT evaluates the branch condition b and evaluates é; if it is true. A similar rule (omitted here)
can be written if the conditional evaluates to false. A-TopT checks if the expression é evaluates to
T. We omit evaluation rules for the false case and other branching predicates such as bot?, var?,
and val? which are similar to top?.

The rules for evaluating e C e are most interesting, as these test for the C relation while
constraining abstract variables X to the range under which the relation e C e holds. In general, the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

171:10 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

vey(d) d Ca I[x]=a" da Ca

S-VaL p S-VAR
ATrO:a~v:a(v) ATrO:a~x:a

f#(fl, conXp)=a Al%] = (ai1,ai2)
ai1Ca; a;iCap; d Ca

P’ S-FINITE

ATrDO:a~ f(O:ay,...,0:4ay):0a
A,FI—D:ilwelzfcl A,Tl—l:l:fcn_lwen_lzin_l

Fl—elllal Fi—en_lllan_l
ffay,...,an)=d da Ca
; S-SOLVE
ATrO:a~ f(eg:ay,...,0Op:ay) :a
x; and X’ is fresh

S-ENUMER

ATrO:a~ f(O:%xy,...,0:%,) :x’

Fig. 6. Hole replacement rules for L.

abstract variable narrowing reduces the range of % to a sound range for that evaluation through f*.
In effect it is finding satisfiable range for x for that branch. A-VARCONST tests for the C relation
when é; evaluates to a variable ¥ and é, evaluates to a values 0. In such a case, if 0 is within the
range of the variable X the term evaluates to true, while updating the upper bound of x to o. This
narrows the abstract variables, while still being sound under which the partial order relation C
holds true. A similar symmetrical rule exists (omitted here) where the left hand evaluates to 0 and
right hand evaluates to x. Finally, A-VARSUB gives the rules for comparing two abstract variables
X1 and X5. It uses a metafunction T to describe the cases where %; is contained in %, or has some
overlap, or x; is less than x5.

3.2 Abstraction-Guided Synthesis

To perform abstraction-guided synthesis, ABsYNTHE recursively replaces holes by suitable expres-
sions and then tests fully concretized candidates. Figure 6 shows the rules for hole replacement.
These rules prove judgments of the form A, T e; ~» e, : a, meaning in bounds environment A
and abstract environment I', expression e; takes a step by replacing a hole in e; to yield a new
expression e;. In particular, S-VAL replaces O : a with a value v from the concrete set that a abstracts.
Similarly, S-VAR replaces a hole with a variable that is compatible with the hole’s label.

The next few rules are used to generate function applications, or more generally, any term
that may have more holes. First, S-FINITE generates function application when the domain from
which a is drawn is finite, e.g., a simple type system that without polymorphic types or first
class lambdas, or an effect system as used in Guria et al. [2021]. This rule can produce multiple
candidates with each hole tagged with distinct abstract values from the domain. Second, for abstract
domains with infinite values that can be represented in a background theory solver, ABSYNTHE
applies the S-SoLvE. If the function application requires n arguments, only n — 1 arguments are
concretized to a term. This gives the constraint f*(ay,...,a,) = @’ with only one unknown, a,,
that can solved for and assigned to the hole. For {* to be lifted to a SMT solver f* should also
have an interpretation a background theory supported by the solver. This is useful for representing
predicate abstractions or numeric domains such as intervals or string lengths (used in SyGuS

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:11

Algorithm 1 Synthesis of programs that passes a spec s

1: procedure GENERATE(a; — ap, maxSize)

2 I'— [x+ a]

3 e < O:ay

4 workList < [eg]

5: while workList is not empty do

6 ecurr < pop(workList)

7 Oenumer < 1€ | T+ ecyrr ~ € : a}

8 Wyalid < {et € Wenumer | I'ke U- anac aZ}
9 Weyal < {et € Woalid | NOHOLE(G;)}

10: Wrem € Woalid — Weval

11: for all e; € w,yy do

12: return e; if TESTPROGRAM(e;)

13: end for

14: Wrem — {€ € Wrem | size(e;) < maxSize}
15: workList < reorder(workList + w,)

16: end while

17: return Error: No solution found

18: end procedure

evaluation in § 5.1). Finally, S-ENUMER replaces a hole with a function application with fresh
abstract variables x; for the arguments and return. Notice there is no guarantee f will produce a
value of the appropriate abstraction. This is because, while we assume we have an abstract transfer
function f*, we do not know what abstraction it will compute without concretizing the arguments.
However, unsound partial programs will be eliminated by the abstract interpreter as discussed
below. Given only forward evaluation semantics and no other information about the domains, this
is best way to construct partial program candidates. ABSYNTHE can switch between bottom-up
synthesis (S-ENUMER) and top-down goal-directed synthesis (rest of the S- rules) depending on
which rule is applied. While these rules are non-deterministic, the ABSYNTHE implementation (§ 4)
chooses and applies these rules for the correct domain in a fixed order to yield solutions.

Synthesis Algorithm. Algorithm 1 performs abstraction-guided synthesis. The algorithm uses a
work list and combines synthesis rules for candidate generation with search space pruning based
on abstract interpretation, in addition to testing in a concrete interpreter. The ordering of programs
in the worklist determines the order in which program candidates are explored (discussed in § 4).
The synthesis algorithm starts off with an empty candidate e, as a base expression in the work
list. At every iteration it pops one item from the work list and applies synthesis rules (Figure 6)
in a non-deterministic order to produce multiple candidates wenymer- Each candidate is abstractly
interpreted, and then checked to see if the computed abstraction satisfies the goal abstraction. If it
is satisfied it is added to the set of valid candidates w,;4 (line 8). As partial programs with holes
represent a class of programs, abstractly interpreting these eliminate a class of programs if they
are not included in the goal a,. Thus, the algorithm iterates through partial programs which are
sound with respect to the abstract specification. Any unsound programs generated by S-ENUMER
are pruned here.

Finally, all concrete programs w,,,; are tested in the interpreter to check if a program satisfies
all test cases, in which case it is returned as the solution. The remaining programs «w;en contain
holes, so these can be expanded further by the application of synthesis rules. Only programs below

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

171:12 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

the maximum size of the search space are put back into the work list, and the order of the work list
is always based on some domain-specific heuristics (§ 4 discusses our program ordering).

4 IMPLEMENTATION

ABSYNTHE is implemented in approximately 3000 lines of Ruby excluding dependencies. It is
architected as a core library whose interfaces are used to build a synthesis tool for a problem
domain. Additionally, to support solver-backed domains, we developed a library (~460 lines) to
lazily convert symbolic expressions to Z3 constraints and solve those in an external process.
ABSYNTHE uses a term enumerator that, at each step, visits holes in a term and substitutes it with
values or subterms containing more holes applying the rules shown in § 3.2. ABSYNTHE requires
users to define a translation from the ASTs to the source program and a method that tests a candidate
to return if the test passed or not. Users may provide a set of constants for the language which
are used as values to be used in the concretization function. In practice, this is useful when the
language has infinite set of terminals (like Python), and selecting values from the set of constants
makes the term generation tractable. For AuToPANDAS benchmarks, we infer such constants from
the data frame row and column labels (§ 2).

ABSYNTHE explores program candidates in order of their size, preferring smaller programs first
(line 15 of Algorithm 1). We plan to explore other program exploration order in future work. The
synthesis rules presented in § 3.2 are non-deterministic, however, our implementation fixes an
order of application such rules. It prefers to synthesize constants and variables followed by function
applications, hashes, arrays, etc. Moreover, based on the definition of abstract domains (discussed
below), it can automatically choose to apply the S-FINITE or S-SoLVER rules. If none of these
specialized rules apply, it uses S-ENUMER rule to synthesize subterms.

Abstract Domains. To guide the search, users need to implement an abstract domain. ABSYNTHE
provides a base class—AbstractDomain from which a programmer can inherit their own abstract
domains implementation, like Figure 2. The base classes come with machinery that gives built-in
implementation of T, L, abstract variables x, and supporting code for partial ordering between
these abstract values. The user has to define how to construct abstract values for that domain
(the initialize method in § 2), the partial ordering relation C between two abstract values. The
abstract variable narrowing (§ 3.1) is implemented as the C method in the AbstractDomain base
class. Solver-aided domains (such as string length in § 5.1) construct solver terms when initializing
an abstract value, or apply functions that compute abstract values (including U and N). These terms
are checked for satisfiability of a; C a, in the solver when the C method is invoked, and any solved
abstract variables are assigned to its holes. If the solver proves the solver term unsatisfiable, the
candidate is eliminated. The rule S-FINITE is applied for domains with finite abstract values and
S-SoLvE is used for domains whose values can be inferred using an SMT solver yielding top-down
goal-directed synthesis. In case these cannot be applied, ABsYNTHE falls back to using the S-ENUMER
rule that is equivalent to bottom-up term enumeration. We plan to explore a more ergonomic API
for the ABSsYNTHE framework in future work.

ABSYNTHE also provides a ProductDomain class to automatically derive product domains by
combining any user-defined domains as needed. The C method on ProductDomain returns the
conjunction of respective C on the individual domains it is composed of.

Abstract Interpreters. Each abstract domain needs a definition of abstract semantics, inherited
from the Abstractinterp class provided by ABSYNTHE (as shown in § 2). All subclasses override
the interpret method that takes as argument the abstract environment and the AST of the term
that is being evaluated. In practice, it is implemented as evaluating subterms recursively, and then
applying the abstract transformer function written in a subset of Ruby (similar to L4 in § 3.1) to

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:13

evaluate the program in the abstract domain. A sound interpreter for ProductDomain is derived
automatically, by composing the interpreters of its base domains. More specifically, it evaluates the
term under individual base domains and then combines the results pointwise into a product.

Concrete Tests. Any synthesized term without holes that satisfies the abstract specification is
tested by ABSYNTHE in a reference interpreter against concrete test cases. ABSYNTHE expects the
programmer to define a test_prog method that calls the reference interpreter with the synthesized
source program (as a string in the source language), and returns a boolean to indicate if the tests
passed. The reference interpreter runs the test case, which in many cases boils down to checking
the program against the provided input/output examples. If the program passes all test cases, it is
considered the correct solution. If the program fails a test, it is discarded.

Optimizations. In practice, ABSYNTHE uses a min-heap to store a work list of candidates ordered
by their size. This eliminates the reorder step (Algorithm 1 line 15), saving an average cost of
O(nlogn) at each synthesis loop iteration. Additionally, we found certain common subterms occur
frequently in the same program, e.g., computing the index of the first space in a string in a SyGuS
program. ABSYNTHE caches small terms (containing up to one function application) that do not
have any holes to save the cost of synthesizing these small fragments. Whenever, a hole with
compatible abstract value is found, these fragments are substituted directly without doing the
repetitive work of synthesizing the function application from scratch again (similar to subterm
reuse in DRYADSYNTH [Huang et al. 2020]). Finally, ABSYNTHE tests a set of predicates against given
input/output examples, to guess a partial program instead of starting from just a O term. For example,
ABSYNTHE has a predicate that checks if the output is contained in the input, then the output is a
substring of the input. For the SyGuS language, if the predicate (str.contains output input) tests
true, then the partial program is inferred to be (str.substr input O O). This reduces the problem
complexity by cutting down the search space. Another predicate (str. suffixof output input)
tests if the input ends with output, then it infers the partial program (str . substr input O (str.len
input)), i.e, the program is possibly a substring of the input from some index to the end. We evaluate
the performance impact of the latter two optimizations in § 5 (No Template column in Table 1).

Limitations. While ABSYNTHE is a versatile tool to define custom abstract domains and combine
it with testing in a reference interpreter, the approach does have some limitations. First, ABSYNTHE
only works with forward evaluation rules over the abstract domain, in contrast to FlashMeta [Polo-
zov and Gulwani 2015] that requires “inverse semantics”, i.e., rules that given a target abstraction
computes the arguments to the abstract transformer. While specifying only the forward semantics
eases the specification burden for users, it require more compute time to synthesize subterms such
as arguments to functions. Second, while we found product domain useful to combine separate
domains, these domains remain independent through synthesis, unlike predicates where all defined
semantics can be considered at the same time. We plan to explore methods to make product domains
more expressive in future work. Third, problems where one can define full formal semantics are a
better fit for solver-aided synthesis tools such as Rosette [Torlak and Bodik 2014] or SEMGUS [Kim
et al. 2021]. We share performance benchmarks on SyGusS strings (which have good solver-aided
tools) to give some evidence for this in our evaluation (§ 5.1). Notably, solver-aided tools can jointly
reason about subterms. In contrast, when using solver-aided domains, ABSYNTHE concretizes some
of the subterms which requires enumeration through larger number of terms. Finally, ABSYNTHE
falls back on term enumeration when abstract domains do not provide any more guidance, often
leading to combinatorial explosion for larger terms.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

171:14 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

5 EVALUATION

We evaluate ABSYNTHE by targeting it in variety of domains, to verify it can synthesize different
workloads. The primary motivation is to evaluate the general applicability of abstract interpretation-
guided synthesis to diverse problems rather than being a state-of-the-art tool at a single synthesis
benchmark suite. The questions we aim to answer in our evaluation are:

e How well does ABSYNTHE work for problems traditionally targeted using solver-based strate-
gies using the SyGuS strings benchmark [Alur et al. 2017a] (§ 5.1)? We also discuss the
performance impact of optimizations and program exploration behavior in ABSYNTHE.

e Can ABSYNTHE be adapted to an unrelated problem (not handled by any tools that solve
SyGuS benchmarks) where it is difficult to write precise formal semantics? We test this
by using ABSYNTHE to synthesize Python programs that use the Pandas library from the
AuTOPANDAS [Bavishi et al. 2019] benchmark suite (§ 5.2).

5.1 SyGusS Strings

Benchmarks. To test that ABSYNTHE is a viable approach to synthesize programs that has been
well explored in prior work, we target it on the SyGusS strings benchmark suite [Alur et al. 2017a].
We believe strings form a good baseline to compare ABsYNTHE with other synthesis approaches
that rely on enumerative search [Alur et al. 2017b], SMT solvers [Reynolds and Tinelli 2017], and
abstract methods directed by solvers [Wang et al. 2017b] (discussed in details in § 6). In contrast,
ABSYNTHE uses only abstract domains with their forward transformers to guide the search. We do
not expect ABSYNTHE to out-perform the past tools, rather to evaluate if it can solve most of the
benchmarks at a lower cost of defining lightweight abstract domains and partial semantics upfront.

SyGusS strings has 22 benchmarks with 4 variants of each—standard (baseline set of input/output
examples), small (fewer examples than standard), long (more examples than standard), long-repeat
(more examples than long with repeated examples). As our approach is dependent only on the
abstract specification and testing, not on the number of examples, we show detailed results for the
standard version of these benchmarks. These results generalize to all variants of each benchmark. As
we aim to evaluate how abstraction guided search performs, we exclude any programs containing
branches. Previous work like RBSYN [Guria et al. 2021] and EUSOLVER [Alur et al. 2017b] have used
test cases that cover different paths through a program to do more efficient synthesis of branching
programs. These can be adapted to a system like ABSYNTHE with minor effort.

ABSYNTHE parses the SyGusS specification files directly to prepare the synthesis goal and load
the target language. As SyGuS does not come with an official concrete interpreter for programs, we
provide one written in Ruby that is compliant with the SyGusS specifications [Raghothaman and
Udupa 2014]. ABsYNTHE uses this interpreter as a black-box and does not receive any additional
feedback other than the generated SyGuS programs satisfied the input-output examples or not.

Abstract Domains. We defined the following abstract domains and their semantics to run the
benchmark suite:

(1) String Length. A solver-aided domain to lift strings to their lengths, while lifting integers
and booleans without transformation. This means the concretization of the abstract value 5
can be the number 5 and the set of all strings of length 5, whereas the boolean abstract value
true or false represents identical concrete values.

(2) String Prefix. A domain to represent the set of strings that begin with a common prefix. For
example, an abstract value with string “fo” is wider than an abstract value with string “foo”,
as the former denotes all strings starting with “fo” and the latter includes a subset of that, i.e.,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:15

strings starting with “f00”. The C operation checks if the prefix of one string starts with the
prefix of the other.

(3) String Suffix. A domain to represent the set of strings that end with a common suffix, similar
to string prefix domain. The C operation checks if the suffix of one string ends with the suffix
of the other.

These domains were created by looking at the input/output examples in the synthesis specs, and
encoding the simplest partial semantics that guides the reasoning. For example, a few problems
have programs that start with or end with a string constant. This is how we designed the string
prefix and suffix domains respectively. On the other hand, many problems produce strings of fixed
lengths or the length of the output string is a function of the length of the input string. The string
string length domain expresses semantics constraints of this kind. As the string length domain is
solver-aided, it can handle symbolic constraints from abstract variables like the string length of
a substring str . substr operation is j - i where i and j are the start and end index respectively.
Although the string length domain does not preserve type information, SyGuS being a typed
language (type-soundness enforced by the grammar) all programs in the language are type-correct
by construction. Consequently, we did not need to write a type system as an abstract domain.

Finally, we give abstract specifications in the selected abstract domains where required. Specifi-
cally, we run each benchmark without an abstract annotation, i.e., equivalent to T — T specification
which results in naive enumeration combined with abstract interpretation. If a benchmark times
out, then we add an abstract annotation, such as T — “Dr. ” for the dr-name example (Table 1). This
specification means, ABSYNTHE should find a function that given any input string (T), it computes
strings starting with “Dr. ” only.

Results. Table 1 shows the results of running the SyGusS strings benchmarks through ABSYNTHE
with the discussed domains. The numbers are reported as a median of 11 runs on a 2016 Macbook
Pro with a 2.7GHz Intel Core i7 processor and 16 GB RAM. All experiments had a timeout of 600
seconds. In Table 1, Benchmark column is the name of the problem, # Ex shows the number of
input/output examples. Time shows the median running time of the benchmark along with the
semi-interquartile range over 11 runs. The Size and Ht columns give the size of the synthesized
program as the count of the AST nodes in the SyGusS language and the height of the synthesized
program AST respectively. The # Tested column lists the number of programs that were tested
in the concrete interpreter before a solution was found. An abstraction that works well reduces
this number compared to a worse abstraction or naive enumeration. Domains column lists the
domains used for synthesizing the program. These domains were provided as a specification in
the abstract domain. T denotes that an abstract specification was provided as a product of T
values in all individual domains for input and output, resulting in just term enumeration. The
rows which mention the domain was provided abstract specs only from that domain, resulting in
guidance from the provided specification. The # Elim lists the number of partial programs (denotes
a family of concrete programs) that were eliminated by running the abstract interpreter with the
provided specification during the search. For the problems which used the T domain, the abstract
interpreter did not eliminate any partial programs, as specification admits all programs. Any row
with — denotes time out of the benchmark under these abstract specifications.

Most benchmarks are solved within ~7 seconds, with exceptions being name-combine-3, phone-6,
and phone-7 which take longer. In general a larger program takes much longer to synthesize, due
to combinatorial increase in the number of terms being searched through as the AST size increases.
For example, larger programs with same AST height take longer to synthesize due to higher number
of function arguments. The number of examples do not impact the time for synthesis as most time
is spent in abstract interpretation and term generation. Testing a candidate on the examples take

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

171:16 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

Table 1. Results of running ABsYNTHE on SyGusS strings benchmarks. # Ex lists the number of I/O examples;
Time lists the median and semi-interquartile range for 11 runs; Size and Ht reports the number of AST nodes
and the height of the program AST respectively; # Tested is the number of programs run in the concrete
interpreter before a solution was found; Domains lists the domains used to specify the abstract spec; and #
Elim lists the number of partial programs eliminated by the abstract interpreter during search. No cache and
No Temp measure the performance of ABSYNTHE when small expression cache and template inference (§ 4)
are disabled respectively.

Benchmark #Ex Time (sec) Size | Ht | # Tested | Domains | # Elim No Cache | No Temp
bikes 6 1.70 +0.02 7 4 4808 T 0 2.55 35.05

dr-name 4 1.54 +0.02 11 4 4797 Prefix 46610 139.53 2.92
firstname 4 0.03 +0.00 71 3 4 T 0 0.63 0.18
initials - - - - - - - - -

lastname 4 0.02 +0.00 10 4 15 T 0 0.81 18.72
name-combine 6 0.21 + 0.00 5 3 566 T 0 0.24 0.22
name-combine-2 4 6.01 +0.06 9 4 9723 Suffix 48516 6.65 8.28
name-combine-3 6 47.86 +0.23 9 5| 117370 Suffix | 124573 68.29 43.63
name-combine-4 - - - - - - - - -
phone 6 0.03 + 0.00 4 2 3 T 0 0.03 0.12

phone-1 6 0.16 +0.00 6 3 1189 T 0 0.20 7.32
phone-2 6 0.05 +0.01 71 3 41 T 0 0.04 63.82
phone-3 - - - - - - - - -
phone-4 6 0.05 +0.01 4 2 1577 T 0 0.05 0.14
phone-5 7 0.03 +0.00 71 3 18 T 0 2.16 0.20
phone-6 7 100.54 +0.51 14 4 5937 Length 12234 - 27.79
phone-7 7 103.92 +0.37 14 4 54051 Length 12639 - -
phone-8 7 0.72+000 | 10| 4 217 | Length 31 1.37 -
phone-9 - - - - - - - - -
phone-10 - - - - - - - - -
reverse-name 6 0.35 + 0.00 5 3 593 T 0 0.41 0.42
univ-1 6 6.69 +0.07 7 3 19683 T 0 8.08 7.73

minimal time. ABSYNTHE performs reasonably well, solving around the same number of benchmarks
as EUSOLVER [Alur et al. 2017a]. We selected EUSOLVER as it is based on an enumerative search
method like ABSYNTHE. The timeout of 600 seconds only applies to our ABSYNTHE evaluation,
whereas EUSOLVER was evaluated with a timeout of 3600 seconds. ABSYNTHE solves around 77% of
the benchmarks despite being a tool written a Ruby, one of the more slower languages. We suspect
additional performance gains can be had by writing the tool in performant language that compiles
to native code. We plan to explore this in future work. Additionally, ABSsYNTHE does not have the
problem of overfitting because the search algorithm does not use the input/output examples. It
merely uses it as a test case, and since they do not influence term enumeration they do not cause
overfitting with respect to the examples.

Domain-specific synthesis costs. Another key advantage of the ABSYNTHE approach is only pay
for what you use. The time of synthesis is dependent on the semantics of the abstract domain.
String prefix and suffix are implemented in pure Ruby and does not incur much cost for invoking
the solver, so these still guide the search without much cost. However, the string length domain
being a solver-backed domain, requires a call to Z3 for every C check. So it give more precise
pruning, while taking a longer time for synthesis. Comparing the average time to generate all the
concrete programs explored gives evidence for this. For example, consider phone-6 which explores

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:17

5937 candidates in 100.54 seconds (16.93ms average) with the string length domain, whereas name-
combine-3 explores 117370 candidates in 47.86 seconds (0.41ms average) with the string suffix
domain. Depending on how expensive a domain is, one can combine the domains to fit in a variety
of synthesis time budgets.

Impact of performance optimizations. We explore the impact of performance optimizations dis-
cussed in § 4. First, the performance of ABsYNTHE on these benchmarks when the small expressions
cache is disabled is reported in the No cache column. It is slower than the baseline across all
benchmarks. Notably, phone-6 and phone-7 reuse function application subterms. So without caching
small expressions, these two benchmarks do repetitive work synthesizing the same expressions in
different call sites, resulting in a timeout. Second, the No Temp column reports the performance
numbers of ABSYNTHE when it is run on these benchmarks with the template inference by testing
predicates is disabled. It is slower on most benchmarks than the baseline, and even causing timeouts
on some (phone-7 and phone-8). The exceptions are phone-6 and name-combine-3, where the no
templates version is faster than the baseline. Recall, that the inferred templates have holes, that have
are tagged with a fresh abstract variable X resulting in enumeration of more terms. In contrast, the
candidate generation rules (S-) applied during the program search that may potentially synthesize
holes with more precise abstractions resulting in less terms being enumerated. We plan to explore
mechanisms to infer template holes with more precise abstractions in future work.

5.2 AutoPandas

Benchmarks. We want to test if the approach used by ABSYNTHE, of guiding the search with
lightweight abstract semantics combined with testing to ensure correctness, is general enough
to be useful for another domain. For this purpose we use the AuToPANDAS [Bavishi et al. 2019]
benchmark suite from its artifact ! as a case study. The benchmarks are sourced from StackOverflow
questions containing the dataframe tag. Each benchmark contain the input data frames, additional
arguments, the expected data frame output, the list of Pandas API methods to be used in the
program, and the number of method calls in the final program.

Bavishi et al. [2019] define smart operators to generate candidates and train neural models from a
graph-based encoding on synthetic data to rank generated candidates. For a baseline, they consider
an enumerative search synthesis engine that naively enumerates all possible programs using the
methods specified in the benchmark. This narrows down the search space to a permutation of 1, 2,
or 3 method calls specified upfront, instead of search over all supported Pandas API. In contrast,
ABSYNTHE works like enumerative search, but large classes of programs are eliminated by abstract
interpretation of partial programs, or terms are constructed guided by the abstract semantics. Unlike
SyGusS, all benchmarks in AuToPANDAS have only one input and output example. The synthesis
goal is a multi-argument Python method that given the specified input produces the desired output.

The evaluation of AuTOPANDAS benchmarks uses the same ABSYNTHE core as the SyGuS eval-
uation. We wrote a test harness in Python that loads the AuToPaANDAs benchmarks written in
Python and communicates with ABSYNTHE core running as a child process. The ABSYNTHE core
is responsible for doing the enumerative search, while eliminating programs using abstract inter-
pretation. Any concrete program generated by ABSYNTHE is tested in the host Python interpreter.
These operations are performed as inter-process communication over Unix pipes between the host
Python harness process and the child ABsyNTHE Ruby process. This allows the testing of generated
programs in the host Python process, saving the overhead of launching a new Python process and
importing Pandas packages (about 1-3 seconds) for every candidate. If the input/output examples

LGitHub: https://github.com/rbavishi/autopandas

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

https://github.com/rbavishi/autopandas

171:18 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

are satisfied the synthesis problem is solved, else control is returned back to ABsYNTHE which
searches and sends the next candidate for testing.

Abstract Domains. The abstract domains used for AUTOPANDAS benchmarks are:

(1) Types. A domain to represent the data type of the computed values (Figure 2c).
(2) Columns. A domain to represent dataframes as a set of their column labels (Figure 2a).

Our Python harness infers the data types and the column labels from the input/output examples
and the ABSYNTHE core constructs the abstract domain values from PyType and ColNames domains
respectively. These individual domains are combined pointwise using the product domain PyType
X ColNames, and ABSYNTHE soundly applies the individual abstract semantics to compute values
in the same product domain. The types domain in ABSYNTHE is a wrapper around types from
RDL [Foster et al. 2020], a type system for Ruby. ABsYNTHE uses RDL as a library to build the PyType
class (the ty field holds an RDL type as shown in Figure 2c). This allows us to reuse prior work
that defines nominal types, generic types, finite hash types, singleton types, and their subtyping
relations. We define the semantics for these RDL types for the Python language in an abstract
interpreter PyTypelnterp to handle features such as standard method arguments, optional keyword
arguments, and singleton types as arguments (like int). We define the concretization function y
over these types, for example, nominal types can be concretized by all constants of the correct
type from the set of constants or the singleton types are concretized to the singleton value itself.
The semantics of the type domains are defined in terms of the PyType wrapper that calls into the
relevant RDL methods. The example implementation of these domains in § 2 is a simplified version
of these domains.

In practice, the AuToPANDAS benchmarks have input/output examples that are not just data
frames, but also integers, Python lambdas, and method references (such as nunique from the Pandas
library). ABSYNTHE is soundly able to abstract these into the relevant domains. For types, integers
become Integer and lambdas are inferred as a type Lambda. When these values are lifted to the
columns domain, they are represented as L as these are not data frames, thus there is no way to
soundly represent their column labels. Additionally, ABSYNTHE infers a set of constants from the
input/output examples as well. It adds any string or numeric row and column labels of the data
frames, in addition to any string or numeric standalone values passed as arguments. This set is
used to synthesize the constants during the application of the S-VAL rules.

Results. Table 2 shows the results of running the AuToPANDAS benchmarks through ABSYNTHE.
The numbers are collected on a 2016 Macbook Pro with a 2.7GHz Intel Core i7 processor and 16
GB RAM, with a timeout of 20 minutes (consistent with the timeout of Bavishi et al. [2019]). The
Name column shows the name of the benchmark, i.e., the StackOverflow question ID from which
the problem is taken. The Depth column shows the length of sequence of method call chain in the
final solution. The AuToPANDAS benchmarks are tuned to synthesize programs with a chain of
method calls, where the bulk of the time spend is in synthesizing arguments to these method calls.
This is characteristic of the Pandas API which accepts many arguments, often optional keyword
arguments. The Time column shows the median of 11 runs along with the semi-interquartile range,
where — denotes that a benchmark timed out. The Size lists the synthesized program size as number
of AST nodes. Note that, this number is affected by both the depth of the synthesized program
(the number of method calls) and the number of arguments to those methods. # Tested lists the
number of concrete programs generated by ABSYNTHE that were tested in the Python interpreter.
Finally, AP Neural and AP Baseline shares the benchmarks solved by the AUTOPANDAS neural model
and naive enumeration to aid in comparison with ABsYNTHE. Two benchmarks, SO_12860421 and

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:19

Table 2. Results of running AuToPANDAS benchmarks through ABsYNTHE. The Depth column shares the longest
chain of method calls in the synthesized solution; Time lists the median and semi-interquartile range of 11 runs
for time taken to synthesize a program; Size lists the number of AST nodes in the synthesized solution; # Tested
reports the number of concrete Python programs tested; AP Neural and AP Baseline shares the benchmarks
that AuToPANDAS neural model and naive enumeration could synthesize. The benchmarks denoted with a *
were a part of the artifact, but not reported in the paper [Bavishi et al. 2019]. Benchmarks highlighted in blue
and yellow shows the benchmarks only synthesized by ABsYNTHE and AuTOPANDAS respectively.

Name Depth Time (sec) Size | # Tested || AP Neural | AP Baseline
SO_11881165 1 0.20 +0.00 6 40 N v
SO_11941492 1 13.84 +0.04 5 2507 v v
SO_13647222 1 - v v
SO_18172851 1 0.42 +0.00 3 70
SO_49583055 1 3.77 £ 0.01 6 272
SO_49592930 1 0.22 +0.00 3 21 v v
SO_49572546 1 1.50 + 0.01 3 548 v v
SO_12860421" 1 || 686.50 +1.68 11 | 1537521
SO_13261175 1 || 283.12 039 11 237755 v
SO_13793321 1 5.70 + 0.04 6 413 v v
SO_14085517 1| 216.14 038 7 12844 v v
SO_11418192 2 0.10 +0.00 5 11 v v
SO_49567723 2 - N
SO_49987108" 2 -

SO_13261691 2 65.17 +0.17 3 22322 v
SO_13659881 2 0.21 +0.00 6 45 N v
SO_13807758 2 54.92 +0.26 6 3144 v
SO_34365578 2 -

SO_10982266 3 -

SO_11811392 3 6.88 +0.03 4 921

SO_49581206 3 -

SO_12065885 3 0.24 +0.00 6 286 v v
SO_13576164 3 - v
SO_14023037 3 -

SO_53762029 3 || 545.62 +0.91 9 229233 v v
SO_21982987 3 - v v
SO_39656670 3 -

SO_23321300 3 -

SO_49567723, are marked with a * as these were found in the AuToPANDAS artifact were not reported
in the paper.

ABSYNTHE solves 17 programs, the same number of programs as AUTOPANDAS neural model.
However, the set of synthesized programs by both tools are different with a significant overlap.
Benchmarks listed in Table 2 without any highlight shows the benchmarks that were synthesized
by both tools. Benchmarks highlighted in blue were synthesized only by ABsYNTHE but not by
AuTtoPaNDas. Likewise, benchmarks highlighted in yellow are the benchmarks synthesized only by
AuTOPANDAS but not by ABsyNTHE. The time taken to synthesize the programs is largely dictated
by how the abstract semantics prunes the space of programs, hence it is proportional to the number
of concrete programs generated and tested. The fact that, for the same program size, the number
of AST nodes in the method arguments (the difference between size and depth) is indicative of
solving time shows that synthesizing arguments is indeed the bottleneck of this benchmark suite.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

171:20 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

For example, like SO_11811392 and SO_12065885 the type system quickly narrows down the search
space, and the solution uses API methods that have 0 or 1 arguments only, making the arguments
synthesis quick.

Discussion. ABSYNTHE solves a harder synthesis problem because it does not use the list of
methods to be used as provided in the specification. Instead, ABsYNTHE uses the complete set of 30
supported Pandas API for every benchmark. Approximately, this gives us a choice of permutations
of size 1, 2, or 3 (depending on the depth of the final solution) from 30 methods, without considering
arguments from those methods. In contrast, the baseline enumerative search AP Baseline comparison
limits the search to only the Pandas API methods that will be used in the final solution. Typically
this limits the search space to 1, 2, or 3 methods as given in the specification. In other words, under
naive enumeration, ABSYNTHE explores a strictly larger set of programs than AuToPANDAS baseline.

In the benchmarks where ABsYNTHE failed to synthesize a solution, it falls back to term enumer-
ation as the abstract domain was not precise. More specifically in the benchmarks with depth 3,
ABsYNTHE could do better by jointly reasoning about values in relational abstractions between
multiple arguments of the same method. We plan to explore support for relational abstractions in
future work. The neural model trained by Bavishi et al. [2019] is good at guessing the sequences
that are potentially likely to solve the synthesis task. It, however, does not take into account
semantics of the program, thus eliminating impossible programs from being considered. This shows
up in SO_18172851 and SO_49583055 where both enumerative search and neural models failed, but
ABSYNTHE succeeds. Moreover, any updates to the neural model would need to be addressed with a
new encoding or a retraining of the model on new data, a potentially resource consuming process.
However, exploring the synergy of guidance from abstract interpretation combined with neural
models similar to Anderson et al. [2020] to rank sound program candidate choices is an interesting
future work.

6 RELATED WORK

General Purpose Synthesis Tools. SEMGUS [Kim et al. 2021] has the same motivation as ABSYNTHE
to develop a general-purpose abstraction guided synthesis framework. However, SEMGUS requires
the programmer to provide semantics in a relational format as constrained horn clauses (CHCs).
While CHCs are expressive and have dedicated solvers [Komuravelli et al. 2016], correctly defining
semantics as a relations is prohibitively time-consuming and error-prone. Moreover, SEMGUS per-
forms well in proving unrealizability of synthesis problems, but it has limited success in synthesizing
solutions. In contrast, ABSYNTHE is a dedicated synthesizer that is geared towards synthesizing
programs based on executable abstract semantics. ABSYNTHE can be thought of as an unrealizability
prover if coarse-grained semantics, the focus of ABSYNTHE, is sufficient to prove unrealizable. SEm-
GuS also supports under-approximate semantics, which is an interesting future work in the context
of ABSYNTHE. Rosette [Torlak and Bodik 2014] and Sketch [Solar-Lezama 2013] are solver-aided
languages that use bounded verification using a SMT solver to synthesize programs written in a
DSL. In contrast, ABSYNTHE relies on abstract interpretation to guide search, so it can reason about
unbounded program properties. There has been parallel work in synthesis using Christiansen gram-
mars [Ortega et al. 2007] that allows one to encode some program semantics as context-dependent
properties directly in the syntax grammar. However, an abstract interpreter-based approach gives
ABSYNTHE more semantic reasoning capabilities (like polymorphism).

Domain-specific synthesis. SyGuS [Alur et al. 2013] being a standard synthesis problem spec-
ification format, has seen a variety of solver approaches. CVC4 [Reynolds and Tinelli 2017] is
a general-purpose SMT solver that has support for synthesizing programs in the SyGuS format.
CVC4 has complete support for theory of strings and linear integer arithmetic, so it performs better

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:21

than ABsYNTHE (which is guided by simple abstract domains) for SyGuS. However, ABSYNTHE’S
strength is generalizability to other kinds of synthesis problems as demonstrated in synthesis of
AuToPANDAs benchmarks (§ 5.2). DryadSynth [Huang et al. 2020] explores a reconciling deductive
and enumerative synthesis in SyGuS problems limited to the conditional linear integer arithmetic
background theory. Some of their findings has been adopted by ABSYNTHE (§ 4). EUSOLVER [Alur
et al. 2017b] is an enumerative solver that takes a divide-and-conquer approach. It synthesizes
individual programs that are correct on a subset of examples, and predicates that distinguishes the
program and combines these into a single final solution. ABSYNTHE is close to EUSOLVER, as it is
also based on enumerative search, but it is also guided by abstract semantics as well. We plan to
support synthesizing conditionals in future work.

Past work solves synthesis problems using domain specific abstractions such as types and
examples [Frankle et al. 2016; Osera and Zdancewic 2015], over-approximate semantics on table op-
erations [Feng et al. 2017], refinement types [Polikarpova et al. 2016], secure declassification [Guria
et al. 2022], abstract domain to verify atomic sections of a program [Vechev et al. 2010], and SQL
equivalence relations [Wang et al. 2017a]. These abstraction can be designed as a domain and an
abstract evaluation semantics can be provided to ABsYNTHE for synthesizing such programs. How-
ever, ABSYNTHE being a general purpose synthesis tool, will not have domain specific optimizations.
We plan to explore ABSYNTHE as platform deploying domain specific synthesis in future work.

Abstraction-guided Synthesis. SIMPL [So and Oh 2017] combines enumerative search with static
analysis based pruning, which is similar to ABsYNTHE. However, the program search in ABSYNTHE
can be parameterized by a user provided abstract interpreter allowing the user to write specifications
and semantics in a domain fit for the task-at-hand. Additionally, ABSYNTHE can infer abstract values
for the holes in partial programs, thus guiding the search using the abstract semantics (Figure 6).
Braze [Wang et al. 2017b] is very similar to ABSYNTHE as it uses abstract semantics to guide the
search. It adapts counterexample guided abstraction refinement to synthesis problems by refining the
abstraction when a test fails, and constructing a proof of incorrectness in the process. However, it
starts with a universe of predicates that is used for abstraction refinement, which is a requirement
ABsYNTHE doesn’t place on users. FlashMeta [Polozov and Gulwani 2015] is similar, but requires the
definition of “inverse” semantics for operators using witness functions. ABSYNTHE, however, requires
only the definition of forward abstract semantics and attempts to derive the inverse semantics
automatically where possible.

Learning-based approaches. There has been a recent rise of learning based approaches to make
program synthesis more tractable. AUTOPANDAS [Bavishi et al. 2019] is an example of applying
neural models to rank candidate choices constructed by other program generation methods (smart
operators in AUTOPANDAS’ case). DEEPCODER [Balog et al. 2017] trains a deep neural network
to predict properties of programs based on input/output examples. These properties are used to
augment the search by an enumerative search or SMT solvers. ABSYNTHE is complementary to
these approaches and does not use machine learning. In future, we plan to explore extensions to
ABsYNTHE that reorders the program search order using a model learned on program text and
abstract semantics. EUPHONY [Lee et al. 2018], on the other hand, uses an approach inspired by
transfer learning to learn a probabilistic higher order grammar, and uses that in enumerative search
to synthesize solutions. PROBE [Barke et al. 2020] learn a probabilistic grammar just-in-time during
synthesis. Their key insight is that many SyGuS programs that pass a few examples have parts of
the syntax that has higher likelihood to be present in the final solution. In contrast, ABSYNTHE is
complementary to the approach of learning probabilistic grammars; abstract domains can prune
the space of programs, while the grammar can assign higher weights to the terms that should be
enumerated earlier. We leave exploring the synergy between these approaches to future work.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

171:22 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

7 CONCLUSION

We presented ABSYNTHE, a tool that combines abstract interpretation and testing to synthesize
programs. It accepts user-defined lightweight abstract domains and partial semantics for the
language as an input, and enables guided search over the space of programs in the language. We
evaluated ABSYNTHE on SyGusS strings benchmarks and found ABSYNTHE can solve 77% of the
benchmarks, most within 7 seconds. Moreover, ABSYNTHE supports a pay-as-you-go model, where
the user only pays for the abstract domain they are using for synthesis. Finally, to evaluate the
generality of ABSYNTHE to other domains, we use it to synthesize Pandas data frame manipulation
programs in Python from the AuToPANDAS benchmark suite. ABSYNTHE performs at par with
AuToPANDASs and synthesizes programs with low specification burden, but no neural network
training costs. We believe ABsYNTHE demonstrates a promising design choice for design of synthesis
tools that leverage testing for correctness along with lightweight abstractions with partial semantics
for search guidance.

DATA AVAILABILITY STATEMENT

The latest version of the tool ABSYNTHE is publicly available on GitHub . A snapshot of ABSYNTHE,
along with source code, benchmarks used in the paper, supporting scripts and instructions to
reproduce our results in § 5 are available as a Docker image artifact [Guria et al. 2023].

ACKNOWLEDGMENTS

Thanks to the anonymous reviewers for their helpful comments. This research was supported in
part by National Science Foundation awards #1900563 and #1846350.

REFERENCES

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,
Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013. IEEE, 1-8. https://ieeexplore.ieee.org/
document/6679385/

Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. 2017a. SyGuS-Comp 2017: Results and Analysis. In
Proceedings Sixth Workshop on Synthesis, SYNT@CAV 2017, Heidelberg, Germany, 22nd July 2017 (EPTCS, Vol. 260). 97-115.
https://doi.org/10.4204/EPTCS.260.9

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017b. Scaling Enumerative Program Synthesis via Divide and
Congquer. In Tools and Algorithms for the Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10205), Axel Legay and Tiziana Margaria
(Eds.). 319-336. https://doi.org/10.1007/978-3-662-54577-5_18

Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. 2020. Neurosymbolic Reinforcement Learning with
Formally Verified Exploration. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle, Marc’Aurelio Ran-
zato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
448d5eda79895153938a8431919f4c9f- Abstract.html

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning
to Write Programs. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=ByldLrqlx

Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-time learning for bottom-up enumerative synthesis. Proc.
ACM Program. Lang. 4, OOPSLA (2020), 227:1-227:29. https://doi.org/10.1145/3428295

Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019. AutoPandas: neural-backed generators for
program synthesis. Proc. ACM Program. Lang. 3, OOPSLA (2019), 168:1-168:27. https://doi.org/10.1145/3360594

Zhttps://github.com/ngsankha/absynthe

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

https://ieeexplore.ieee.org/document/6679385/
https://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.4204/EPTCS.260.9
https://doi.org/10.1007/978-3-662-54577-5_18
https://proceedings.neurips.cc/paper/2020/hash/448d5eda79895153938a8431919f4c9f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/448d5eda79895153938a8431919f4c9f-Abstract.html
https://openreview.net/forum?id=ByldLrqlx
https://doi.org/10.1145/3428295
https://doi.org/10.1145/3360594
https://github.com/ngsankha/absynthe

ABSYNTHE: Abstract Interpretation-Guided Synthesis 171:23

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977. ACM, 238-252. https://doi.org/10.1145/512950.512973

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2005.
The ASTREE Analyzer. In Programming Languages and Systems, 14th European Symposium on Programming,ESOP 2005,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005,
Proceedings (Lecture Notes in Computer Science, Vol. 3444). Springer, 21-30. https://doi.org/10.1007/978-3-540-31987-0_3

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis using conflict-driven learning. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA,
USA, June 18-22, 2018. ACM, 420-435. https://doi.org/10.1145/3192366.3192382

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based synthesis of
table consolidation and transformation tasks from examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. ACM, 422-436.
https://doi.org/10.1145/3062341.3062351

Jeffrey Foster, Brianna Ren, Stephen Strickland, Alexander Yu, Milod Kazerounian, and Sankha Narayan Guria. 2020. RDL:
Types, type checking, and contracts for Ruby. https://github.com/tupl-tufts/rdl

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed synthesis: a type-
theoretic interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. ACM, 802-815. https://doi.org/10.1145/2837614.
2837629

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 317-330. https://doi.org/10.1145/1926385.1926423

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. 2023. Artifact for "Absynthe: Abstract Interpretation- Guided
Synthesis". https://doi.org/10.5281/zenodo.7824175

Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. 2021. RbSyn: type- and effect-guided program synthesis. In
PLDI °21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021. ACM, 344-358. https://doi.org/10.1145/3453483.3454048

Sankha Narayan Guria, Niki Vazou, Marco Guarnieri, and James Parker. 2022. ANOSY: approximated knowledge synthesis
with refinement types for declassification. In PLDI 22: 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM,
15-30. https://doi.org/10.1145/3519939.3523725

Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang. 2020. Reconciling enumerative and deductive program
synthesis. In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 1159-1174.
https://doi.org/10.1145/3385412.3386027

Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas W. Reps. 2021. Semantics-guided synthesis. Proc. ACM Program.
Lang. 5, POPL (2021), 1-32. https://doi.org/10.1145/3434311

Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2016. SMT-based model checking for recursive programs. Formal
Methods Syst. Des. 48, 3 (2016), 175-205. https://doi.org/10.1007/s10703-016-0249-4

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating search-based program synthesis using
learned probabilistic models. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM,
436-449. https://doi.org/10.1145/3192366.3192410

Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. 2012. Design and implementation of sparse global
analyses for C-like languages. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’12, Beijing, China - June 11 - 16, 2012. ACM, 229-238. https://doi.org/10.1145/2254064.2254092

Alfonso Ortega, Marina de la Cruz, and Manuel Alfonseca. 2007. Christiansen Grammar Evolution: Grammatical Evolution
With Semantics. IEEE Trans. Evol. Comput. 11, 1 (2007), 77-90. https://doi.org/10.1109/TEVC.2006.880327

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015,
David Grove and Stephen M. Blackburn (Eds.). ACM, 619-630. https://doi.org/10.1145/2737924.2738007

Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav Jangda, Bastian Hagedorn, Henrik
Barthels, Samuel J. Kaufman, Vinod Grover, Emina Torlak, and Rastislav Bodik. 2019. Swizzle Inventor: Data Movement
Synthesis for GPU Kernels. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019. ACM, 65-78.
https://doi.org/10.1145/3297858.3304059

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3062341.3062351
https://github.com/tupl-tufts/rdl
https://doi.org/10.1145/2837614.2837629
https://doi.org/10.1145/2837614.2837629
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.5281/zenodo.7824175
https://doi.org/10.1145/3453483.3454048
https://doi.org/10.1145/3519939.3523725
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3434311
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/2254064.2254092
https://doi.org/10.1109/TEVC.2006.880327
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/3297858.3304059

171:24 Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement
types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 522-538.
https://doi.org/10.1145/2908080.2908093

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 107-126. https:
//doi.org/10.1145/2814270.2814310

Mukund Raghothaman and Abhishek Udupa. 2014. Language to Specify Syntax-Guided Synthesis Problems. CoRR
abs/1405.5590 (2014). arXiv:1405.5590 http://arxiv.org/abs/1405.5590

Jeff Reback, jbrockmendel, Wes McKinney, Joris Van den Bossche, Matthew Roeschke, Tom Augspurger, Simon Hawkins,
Phillip Cloud, gfyoung, Patrick Hoefler, Sinhrks, Adam Klein, Terji Petersen, Jeff Tratner, Chang She, William Ayd,
Richard Shadrach, Shahar Naveh, Marc Garcia, JHM Darbyshire, Jeremy Schendel, Torsten Wortwein, Andy Hayden,
Daniel Saxton, Marco Edward Gorelli, Fangchen Li, Matthew Zeitlin, Vytautas Jancauskas, Ali McMaster, and Thomas Li.
2022. pandas-dev/pandas: Pandas 1.4.4. https://doi.org/10.5281/zenodo.7037953

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W. Barrett. 2015. Counterexample-Guided
Quantifier Instantiation for Synthesis in SMT. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 9207), Daniel Kroening
and Corina S. Pasareanu (Eds.). Springer, 198-216. https://doi.org/10.1007/978-3-319-21668-3_12

Andrew Reynolds and Cesare Tinelli. 2017. SyGuS Techniques in the Core of an SMT Solver. In Proceedings Sixth Workshop
on Synthesis, SYNT@CAV 2017, Heidelberg, Germany, 22nd July 2017 (EPTCS, Vol. 260), Dana Fisman and Swen Jacobs
(Eds.). 81-96. https://doi.org/10.4204/EPTCS.260.8

Sunbeom So and Hakjoo Oh. 2017. Synthesizing Imperative Programs from Examples Guided by Static Analysis. In Static
Analysis - 24th International Symposium, SAS 2017, New York, NY, USA, August 30 - September 1, 2017, Proceedings (Lecture
Notes in Computer Science, Vol. 10422), Francesco Ranzato (Ed.). Springer, 364-381. https://doi.org/10.1007/978-3-319-
66706-5_18

Armando Solar-Lezama. 2013. Program sketching. Int. J. Softw. Tools Technol. Transf. 15, 5-6 (2013), 475-495. https:
//doi.org/10.1007/s10009-012-0249-7

Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic virtual machine for solver-aided host languages. In ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 530-541. https://doi.org/10.1145/2594291.2594340

Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2010. Abstraction-guided synthesis of synchronization. In Proceedings of the
37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January
17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 327-338. https://doi.org/10.1145/1706299.1706338

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017a. Synthesizing highly expressive SQL queries from input-output
examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 452-466. https://doi.org/
10.1145/3062341.3062365

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017b. Program Synthesis Using Abstraction Refinement. Proc. ACM Program.
Lang. 2, POPL, Article 63 (dec 2017), 30 pages. https://doi.org/10.1145/3158151

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 171. Publication date: June 2023.

https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
https://arxiv.org/abs/1405.5590
http://arxiv.org/abs/1405.5590
https://doi.org/10.5281/zenodo.7037953
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.4204/EPTCS.260.8
https://doi.org/10.1007/978-3-319-66706-5_18
https://doi.org/10.1007/978-3-319-66706-5_18
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/1706299.1706338
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3158151

	Abstract
	1 Introduction
	2 Overview
	3 Formalism
	3.1 Abstract Transformer Function DSL
	3.2 Abstraction-Guided Synthesis

	4 Implementation
	5 Evaluation
	5.1 SyGuS Strings
	5.2 AutoPandas

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

